

ITU Kaleidoscope 2014

Living in a converged world - impossible without standards?

Modelling and Performance Analysis of Pre-emption Based Radio Admission Control Scheme for Video Conferencing over LTE

Ekaterina Markova
Peoples' Friendship University of Russia
emarkova@sci.pfu.edu.ru

Saint Petersburg, Russian Federation

Modelling and Performance Analysis of Pre-emption Based Radio Admission Control Scheme for Video Conferencing over LTE

Vladimir Y. Borodakiy

JSC "Concern Sistemprom",

Moscow, Russia bvu@systemprom.ru

http://systemprom.ru

Konstantin E. Samouylov,

Irina A. Gudkova,

Ekaterina V. Markova

Telecommunication Systems Department,

Peoples' Friendship University of Russia,

Moscow, Russia

{ksam,igudkova,emarkova} @sci.pfu.edu.ru

http://www.telesys.pfu.edu.ru

http://www.rudn.ru/en

Saint Petersburg, Russian Federation, 3-5 June 2014 ITU Kaleidoscope 2014 - Living in a converged world - impossible without standards?

LTE Sarvicas and Traffic Types

Bit rate	Priority	Exam
GBR	2	Voic
	4	Vide
	3	Real ti gami
	5	Strean vide
Non- GBR	1	Signal
	6,7,8,9	TCP-ba applica

■ **3GPP TS 23.203**: Policy and charging control architecture: Release 12. – 2014

Background & Teletraffic of Multiservice Loss Networks

Unicast

- F. Kelly, K. Ross, V. Iversen
- Product form solution
- Kaufman-Roberts recursion

Multicast

- J. Virtamo, O. Martikainen,
 K. Samouylov, Y. Gaidamaka
- Product form solution
- Recursive algorithm

Elastic

- T. Bonald, M. Logothetis,
 G. Basharin, I. Gudkova
- Product form solution
- Recursive algorithm

Unicast & Multicast

- K. Boussetta, A.-L. Beylot,
 J. Virtamo, K. Samouylov,
 Y. Gaidamaka
- Product form solution
- Recursive algorithm

Unicast & Elastic

- J. Roberts, E. Altman, O. Boxma
- No product form solution
- Approximate methods

Unicast, Multicast & Elastic (Triple Play)

- G. Basharin, K. Samouylov,
 I. Gudkova
- No product form solution
- Approximate methods

Radio Admission Control in LTE

Higher priority service (*pre-emption capable*) can get resources that were already assigned to lower priority services (*pre-emption vulnerable*)

RAC schemes

- Partial pre-emption (service degradation)

 Pre-emption capable service partially gets resources assigned to one or more pre-emption vulnerable services (degrades services = lowers its bit rate)
- Full pre-emption (service interruption)

 Pre-emption capable service fully gets resources assigned to one or more pre-emption vulnerable services (interrupts services)

Teletraffic Models + RAC =

■ **3GPP TS 23.203**: Policy and charging control architecture: Release 12. – 2014

Unicast & Multicast

- No product form solution

Unicast & Elastic

- Product form solution

RAC Model for Unicast and Multicast Services

	pre-emption capable	pre-emption vulnerable
video conference, VC	Yes	Yes
(multicast)	(interrupt VoD)	(degraded by VoD)
video on demand, VoD	Yes	Yes
(unicast)	(degrade VC)	(interrupted by VC)

Notation	Parameter
C	Downlink peak bit rate, bps
λ, ν	Arrival rates of requests for VC and VoD services, 1/s
μ^{-1}, κ^{-1}	VC and VoD service times, s
d=1	Bit rate for VoD service, bps
<i>b</i> ₁ >	Bit rates for VC service, bps
$n \in \{0,1,,\lfloor C/d \rfloor\}$	Number of VoD users
$\mathbf{m} = (m_1, \dots, m_k, \dots, m_K)$	State of a multicast VC session
	Session is active - VC service is
$m_k = 1$	provided at least to one user on bit rate b_k
$m_{k}=0$	Session is not active - VC service is not
K	provided to users on bit rate b_k

Example of service interruption

Performance Measures

State space

$$X = \{(\mathbf{0}, n), 0 \le n \le C, (\mathbf{e}_1, n), 0 \le n \le C - b_1, (\mathbf{e}_k, n), C - b_{k-1} < n \le C - b_k, k = \overline{2, K}\}$$

Blocking probability for video on demand

$$B = p(\mathbf{0}, C) + p(\mathbf{e}_K, C - b_K)$$

Interruption probability for video on demand

$$\Pi = \sum_{n=C-b_{K}+1}^{C-1} \frac{\lambda}{\lambda + \nu + n\kappa} \frac{C_{n-1}^{b_{K}-(C-n)-1}}{C_{n}^{b_{K}-(C-n)}} p(\mathbf{0}, n) + \frac{\lambda}{\lambda + C\kappa} \frac{C_{C-1}^{b_{K}-1}}{C_{C}^{b_{K}}} p(\mathbf{0}, C)$$

Mean bit rate for video conference

$$\bar{b} = \frac{b_1 \sum_{n=0}^{C-b_1} p(\mathbf{e}_1, n) + \sum_{k=2}^{K} b_k \sum_{n=C-b_{k-1}+1}^{C-b_k} p(\mathbf{e}_k, n)}{\sum_{n=0}^{C-b_1} p(\mathbf{e}_1, n) + \sum_{k=2}^{K} \sum_{n=C-b_k-1+1}^{C-b_k} p(\mathbf{e}_k, n)}$$

Case Study

C = 50 Mbps

Video Conference

$$b_1 = 8$$
 Mbps, $b_2 = 6$ Mbps,
 $b_3 = 4$ Mbps, $b_4 = 2$ Mbps,

$$\mu^{-1} = 1$$
 hour,

$$\rho = \lambda / \mu$$

$\rho = \alpha * Total offered load$

Video on Demand

$$d = 2$$
 Mbps,

$$\kappa^{-1} = 2$$
 hour,

$$a = v / \kappa$$

$a = (1 - \alpha) * Total offered load$

RAC Scheme for Unicast and Elastic Services

Saint Petersburg, Russian Federation, 3-5 June 2014 ITU Kaleidoscope 2014 - Living in a converged world - impossible without standards?

Conclusion

- Multiservice loss network models with unicast, multicast and elastic traffics can be used to describe radio resource allocation techniques in LTE networks
- BUT these teletraffic models should be modified in accordance with radio admission control (RAC)
- RAC transforms the methods for analyzing mathematical models
- Mathematical models verified by simulations are needed to develop RAC schemes realizing different pre-emption algorithms