

ITU Kaleidoscope 2014 Living in a converged world - impossible without standards?

A Non Cooperative TV White Space Broadband market Model for Rural Entrepreneurs

S.M Nleya, A. Bagula, M. Zennaro&E.Pietrosemoli **University of Cape town** snleya@cs.uct.ac.za

> Saint Petersburg, **Russian Federation**

INTRODUCTION PROBLEM SYSTEM MODEL NUMERICAL RESULTS CONCLUSION&FURTHER WORK

- Dynamic spectrum sharing under competition.
- The challenge is that of analyzing and obtaining an equilibrium pricing scheme for a smart mesh network in which multiple primary services(Pus) are willing to share allocated spectrum with a secondary service.
- Catalyze decrease in costs and increased access

- A Non cooperative game theoretic approach
- Bertrand game adapted to address the problem of competitive pricing in a dynamic spectrum access where a few Primary users(Pus) services offer spectrum opportunities to a secondary service

Disvore	Liconcod Duc and an		Parameter	Description	
Flayels	Unlicensed SU		λ	Traffic arrival rate	
			k_j^p	Spectral efficiency of Primary User	
Action	Pus Strategize in terms of prices		ϕ_i	payoff	
			k_i^s	Spectral efficiency of	
payoff	Profit of selling spectrum units to SU			secondary User	
			W	Primary Spectrum	
			y_i	Channel quality	
			Q_i	Secondary Spectrum	
			D_i	Delay	
			T_i	Throughput	
		Kitte	C_i	Cost due to QoS Metric	POR
			d	constant	A
			P_i	Price	R
ALL AND ALL AN		P C C	THE ARL	Citizon Shit Decord	30

The spectral efficiency of transmission for secondary user *i* is expressed as

$$k_i = \log_2(1 + Ky_i)$$

$$K = \frac{1.5}{\ln(\frac{0.2}{BER^{tar}})}$$

A quadratic utility function

$\Psi = \sum_{i=1}^{M} Q_i k_i^s - \frac{1}{2} (\sum_{i=1}^{M} Q_i^2 + 2\Delta \sum_{i=1}^{M} Q_i Q_j) - \sum_{i=1}^{M} P_i Q_i$

is implored to ascertain level of spectrum demand

Parameter	Associated Cost	Revenue	Payoff	
$\frac{Delay, D_i(Q_i) =}{\frac{\lambda_i}{2k_i^p (W-Q))^2 - \lambda_i k_i^p (W-Q)}}$	$C_i = dD_i(Q_i)$	$R(D_i) = Q_i P_i$	$\phi^{D} = P_{i} \frac{k_{i}^{s} - P_{i} - \Delta(k_{j}^{s} - P_{j})}{\frac{1 - \Delta^{2}}{d\lambda_{i}}} - \frac{d\lambda_{i}}{2(W_{i} - Q_{i})^{2} - 2\lambda_{i}(W_{i} - Q_{i})}$	
Throughput, $T_i(Q_i) = \sum_{i=1}^N \frac{\beta Q_i}{\sqrt{n \log n}}$	$C_i = \mathrm{d}T_i(Q_i)$	$R(T_i) = Q_i P_i$	$ \phi^{T} = P_{i} \frac{k_{i}^{s} - P_{i} - \Delta(k_{j}^{s} - P_{j})}{1 - \Delta^{2}} - \frac{k_{i}^{s} - P_{i} - \Delta(k_{j}^{s} - P_{j})}{1 - \Delta^{2}} - \frac{1 - \Delta^{2}}{1 - $	

Parameter	Value
PU spectrum	5MHz
BER	10^{-4}
Channel Quality range	10-20dB
d	1
Y(1)	15dB
Y(2)	18db
Δ	0.4
P(2)	1
λ	4

Delay

Demand, Revenue, Profit and Cost

NUMERICAL RESULTS Demand, Revenue, Profit and Cost

- When the first PU increases its price, the SU demand decreases.
- The cost of the Primary user decreases since the SU demands less. Hence the size of the residual spectrum increases and this translates to a smaller delay.
- The revenue and profit initially increase and then begins to decline. At a smaller price a large amount of spectrum is sold and vice –versa resulting in a smaller revenue.
- Optimal price exists for the best response of PU

Best Response

Delay

Best Response

NUMERICAL RESULTS Channel Quality

Throughput

CONCLUSION & FURTHER WORK

- Non cooperative interaction of Pus and Sus
- Analytic models based on delay and Throughput
- Catalyze decrease in cost and increase access to broadband-rural and remote areas
- Extend model by coupling TV white space allocation with routing module

Thanks! Questions?