System design and numerical analysis of adaptive resource discovery in wireless application networks

Wei Liu, Nishio Takayuki, Ryoichi Shinkuma
Graduate school of Informatics, Kyoto university, Japan
liu@cube.kuee.kyoto-u.ac.jp
Outlines

- Background and application scenario
- System model and problem definition
- Proposed resource discovery method
 - Resource discovery modes
 - Resource Information availability (RIA)
 - Heuristic method
- Numerical evaluation
- Conclusion
1. Background and application scenario
Background and scenario

1. Modern mobile devices own many kinds of resources - High energy cost.
2. Resources in distributed devices can be utilized opportunistically (wireless application networks).
3. Resource sharing in the wireless application networks aims at enhancing functionality and improving performance of a single device.
2. System model and problem definition
System model and problem definition

1. 3G cellular: Long-range, high energy consumption
2. WLAN ad-hoc: Short-range, low energy consumption

Problem definition:

Objective: Minimize energy consumption in resource discovery process

Constraint: $E[\text{Resource Information Availability}] \geq R_{\text{thresh}}$
3. Proposed resource discovery method
Resource discovery modes

Centralized mode

Flooding mode

Own resource?

ID resource
a 2
b 5

Own resource broker

b has 5

3G
WLAN ad-hoc
Resource information availability (RIA) definition

Available resource changes:

1. Allocating and releasing resource for task from itself
2. Allocating and releasing resource for task from other nodes

Resource information availability (RIA):
The possibility that the response to a request includes all available resource information accurately.

① Correctness ② Coverage
RIA Maintainence

Central resource broker

ID	resource
a | 2
b | 3

a

b

2 for b’s own task

2 hop

1 hop

Flooding mode

Centralized mode

kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
RIA VS Energy consumption

Centralized mode
To save energy, wait for a period of time before updating.

Flooding mode
To save energy, adopt smaller TTL values.

Last updating
Available resource changed
Next updating
Energy consumption factors

Central resource broker

<table>
<thead>
<tr>
<th>ID</th>
<th>resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>

C(request, response, updating) F(request, response, TTL)
Proposed resource discovery method

Key idea:
Transform between centralized and flooding discovery strategies according to network status to save energy consumption.

Heuristic method:
(1) Time is divided into discrete time slots.
(2) At the end of every time slot, all nodes send three statistics to the central resource broker.

① Number of resource requests to other nodes
② Average number of responses for each request
③ Number of RIA updating

(3) Central resource broker chooses the strategy that is assumed to be energy efficient in the next time slot and notify all nodes.
4. Numerical evaluation
Scenario and parameters

- Nodes are distributed in a rectangular area uniformly. They can discover resource through both 3G and WLAN ad-hoc networks.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space area</td>
<td>1000m*1000m</td>
</tr>
<tr>
<td>Nodes Number</td>
<td>100</td>
</tr>
<tr>
<td>WLAN ad-hoc range</td>
<td>250m</td>
</tr>
<tr>
<td>3G transmission energy</td>
<td>20</td>
</tr>
<tr>
<td>3G receiving energy</td>
<td>10</td>
</tr>
<tr>
<td>WLAN transmission energy</td>
<td>1</td>
</tr>
<tr>
<td>WLAN receiving energy</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Performance in extreme situations

- When the network status keeps in a single area, the proposed method always performs near to the better choice.

Flooding area (FR)
Centralized area (CR)
Fast oscillation: fast hopping between CR & FR
When the network status transforms between flooding and centralized areas, the proposed adaptive method performs better than both methods because of its adaptivity.

- 200 requests in one time slot (FR)
- 300 requests in one time slot (intermediate)
- 400 requests in one time slot (CR)

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Conclusion

1. Introduce an adaptive resource discovery solution in wireless application networks. According to our best knowledge, the first proposition of adaptive discovery solution based on method transforming.

2. Theoretical analysis and heuristic method of the solution are given.

3. The efficiency of the proposed adaptive resource discovery solution was confirmed by extensive evaluations.
Thanks for your attention!

Wei Liu
Kyoto University, Kyoto, Japan
liu@cube.kuee.kyoto-u.ac.jp