Non-Directed Indoor Optical Wireless Network with a Grid of Direct Fiber Coupled Ceiling Transceivers for Wireless EPON Connectivity

D. R. Kolev¹, T. Kubo², T. Yamada², N. Yoshimoto², K. Wakamori¹

¹GITS, Waseda University, Japan
²ANSL, NTT Corporation, Japan

dkolev@fuji.waseda.jp
Outline

- Research motivation
- Proposed system
 - EPON standard
 - Theoretical model
 - Synchronization
- Results and discussion
- Conclusion and future work
Research Motivation

Expanding market of portable devices and applications

Goal: high-speed, secure and power efficient indoor communication system for mobile users

Indoor optical wireless networks:
- **High speed**
- **Line of sight (LOS)**
- **Low power consumption**
- **Electromagnetic interference immunity**

OLT - optical line terminal
ONU - optical network unit
CM - ceiling module

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Proposed System - EPON

New standards or compatibility with current fiber standards – EPON (802.3ah)
- Provides seamless connectivity for IP-based communications
- Scalable bit rates for the users
- Widely used and cost effective

\[\text{OLT} \quad \text{Splitter} \quad \text{ONU} \quad \text{ONU} \quad \text{ONU} \]
\[\text{OLT} \quad \text{Splitter} \quad \text{CM} \quad \text{CM} \quad \text{ONU} \quad \text{ONU} \quad \text{ONU} \]

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Proposed system – Theoretical Model

\[L_{\text{tot}} = L_{\text{split}} L_{\text{coupling}} L_{\text{beam}} L_m \]

\[P_{Ar} = P_t L_{\text{tot}} G_{OA} \]

- \(G_{OA} \) – Optical gain
- \(\omega \) - Beam waist
- \(r_2 \) - Rx aperture diameter
- \(L_{\text{tot}} \) – Total loss
- \(L_m \) – Loss margin
- \(P_{Ar} \) – Received optical power

\(\omega = 1 \text{m}, \ r_2 = 20 \text{mm}: \)

\(L_{\text{beam}} = 45 \text{dB} \)

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Proposed system – Theoretical Model

\[SNR_d = \frac{(P_{Ar} \rho_{RX})^2}{\langle i_{ase}^2 \rangle + \langle i_{bn}^2 \rangle + \langle i_{th}^2 \rangle} = \frac{(P_{t,d} L_{tot} G_{OA} \rho_{RX})^2}{4I_s G_{OA} I_{ASE} L_{tot} \frac{B}{\Delta v_f} + 2e\rho_{RX} P_{bn,d} B + \frac{4kTB}{R_{in}}} \]

\[SNR_u = \frac{(P_{t,u} L_{tot} G_{OA} \rho_{RX})^2}{4I_s G_{OA} I_{ASE} L_{tot} \frac{B}{\Delta v_f} + 2e\rho_{RX} P_{bn,u} BG_{OA} + \frac{4kTB}{R_{in}}} \]

Eye safety

The transmit power in the wireless part is under 10dBm;

(Class 1 laser product: IEC 60825-1)
Proposed system - Synchronization

- Synchronization in the fiber part can be achieved by path equalizing.
- In wireless part the mobile device is mobile with random location – only the biggest delay can be estimated.

\[h = 2m, \quad r = 1m, \quad \Delta t = 0.64\text{ns} \]
Results – Downlink

- 0dBm transmit power
- Big indoor coverage
- Reliable high speed link (100Mbps)

100Mbps link with receiver aperture diameter $r_2=50\text{mm}$

100Mbps link with beam spot diameter $D=2\text{m}$

PD responsitivity: 0.8A/W
PD load resistor: 50Ω
Results - Uplink

- LD with transmit power $P_{t,d} = 0$ dBm
- Reliable high speed uplink (100Mbps)
- Lower speed will further increase the system performance
Conclusion

- Proposed system - Sustainability:
 - Compatible with EPON standard;
 - High-speed communication for mobile users;
 - Low power consumption compared to RF;
 - High security;
 - Free RF spectrum (interference immunity)
 - lower human exposure to electromagnetic waves;
 - free resources for other applications;
 - Eye safety regulations considered;
Future work

- Proposed system:
 - Better theoretical model;
 - Enhanced performance:
 - Transimpedance amplifier implementation;
 - Gigabit links;
 - Prototype;

- Standardization:
 - Update of EPON standard for wireless networks;
 - Propose for change in the uplink wavelength;
Thank you for your attention!

Dimitar R. Kolev
Waseda University, Japan
dkolev@fuji.waseda.jp