Non-Directed Indoor Optical Wireless Network with a Grid of Direct Fiber Coupled Ceiling Transceivers for Wireless EPON Connectivity

D. R. Kolev1, T. Kubo2, T. Yamada2, N. Yoshimoto2, K. Wakamori1

1GITS, Waseda University, Japan
2ANSL, NTT Corporation, Japan

dkolev@fuji.waseda.jp
Outline

- Research motivation
- Proposed system
 - EPON standard
 - Theoretical model
 - Synchronization
- Results and discussion
- Conclusion
Research Motivation

Expanding market of portable devices and applications High capacity mobile access network

Goal: high-speed, secure and power efficient indoor communication system for mobile users

Indoor optical wireless networks:
- Diffusive
- Line of sight (LOS)
Proposed System - EPON

New standards or compatibility with current fiber standards – EPON (802.3ah)

- Provides seamless connectivity for IP-based communications
- Widely used and cost effective
- Scalable bit rates for the users

OLT - optical line terminal
PON - passive optical network
ONU - optical network unit
CM - ceiling module
Proposed system – Theoretical Model

OLT – optical line terminal
OA – optical amplifier
PD – photodiode
LD – laser diode

\[L_{tot} = L_{split} L_{coupling} L_{beam} L_m \]

\[P_{Ar} = P_t L_{tot} G_{OA} \]

\[\omega = 1\text{m}, r_2 = 20\text{mm}: \]
\[L_{beam} = 45\text{dB} \]

\[\omega \] - beam waist
\[r_2 \] - Rx aperture diameter
Proposed system – Theoretical Model

\[
SNR_d = \frac{(P_{Ar} \rho_{RX})^2}{\langle i_{ase}^2 \rangle + \langle i_{bn}^2 \rangle + \langle i_{th}^2 \rangle} = \frac{(P_{t,d} L_{tot} G_{OA} \rho_{RX})^2}{4I_s G_{OA} I_{ASE} L_{tot} \frac{B}{\Delta v_f} + 2e \rho_{RX} P_{bn,d} B + \frac{4kTB}{R_{in}}}
\]

\[
SNR_u = \frac{(P_{t,u} L_{tot} G_{OA} \rho_{RX})^2}{4I_s G_{OA} I_{ASE} L_{tot} \frac{B}{\Delta v_f} + 2e \rho_{RX} P_{bn,u} BG_{OA} + \frac{4kTB}{R_{in}}}
\]

\[
\rho_{RX} \quad \text{PD responsitivity}
\]

\[
I_s \quad \text{signal current in the PD}
\]

\[
I_{ASE} \quad \text{ASE current in the PD}
\]

\[
B \quad \text{bandwidth}
\]

\[
\Delta v_f \quad \text{band pass filter bandwidth}
\]

\[
e \quad \text{elementary charge}
\]

\[
P_{bn} \quad \text{ambient noise power}
\]

\[
R_{in} \quad \text{feedback resistance}
\]

\[
k \quad \text{Boltzmann’s constant}
\]

\[
T \quad \text{absolute temperature}
\]

Eye safety

The transmit power in the wireless part is under 10dBm;
Higher transmit power is possible (diverged beam);
Proposed system - Synchronization

- Synchronization in the fiber part can be achieved by path equalizing.
- In wireless part the mobile device is mobile with random location – only the biggest delay can be estimated.

\[h = 2m, \ r = 1m, \ \Delta t = 0.64\text{ns} \]
Results – Downlink

- 0dBm transmit power
- Reliable high speed link
- Big indoor coverage

PD responsivity: 0.8A/W
PD load resistor: 50Ω

100Mbps link with receiver aperture diameter $r_2=50\text{mm}$
100Mbps link with beam spot diameter $D=2\text{m}$

Kyoto, Japan, 22-24 April 2013
ITU Kaleidoscope 2013 – Building Sustainable Communities
Results - Uplink

- LD with transmit power \(P_{t,d} = 0 \text{dBm} \)
- Reliable high speed uplink
- Lower speed will further increase the system performance

\[
\text{BER} = 10^{-\left(G_{\text{EDFA}} / 10\right)}
\]

- \(r^2 = 120 \text{mm} \)
- \(D = 3 \text{m} \)
- \(r^2 = 120 \text{mm} \)
- \(D = 2 \text{m} \)
- \(r^2 = 100 \text{mm} \)
- \(D = 2 \text{m} \)
Conclusion

Proposed system advantages:
- Compatible with EPON standard;
- High-speed communication for mobile users;
- Low power consumption compared to RF;
- High security;
- Free RF spectrum (interference immunity)
 - lower human exposure to electromagnetic waves;
 - free resources for other applications;

Future work:
- Consideration of GEPON;
- Better theoretical model and enhanced performance;
Thank you for your attention!

Dimitar R. Kolev
Waseda University, Japan
dkolev@fuji.waseda.jp