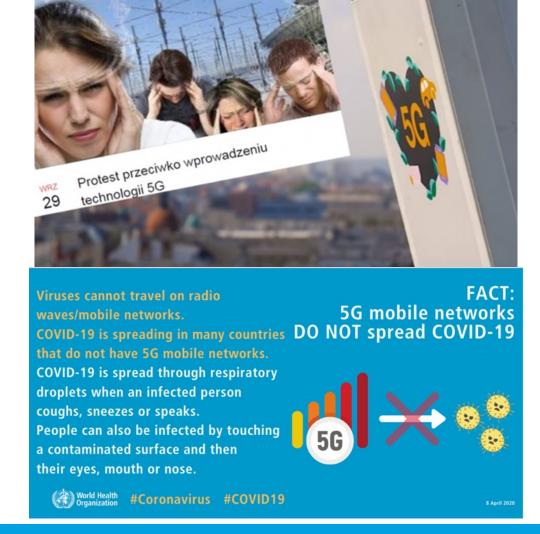

Human exposure to electromagnetic fields (EMFs)

Sustainable Digital Transformation Week for Africa Region 18 May 2023 Workshop on Electromagnetic Compatibility (EMC) and Human Exposure to Electromagnetic Fields (EMF)

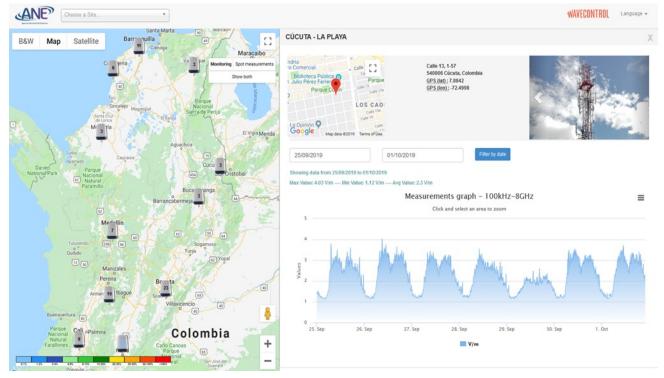
Dr. Fryderyk Lewicki
Chairman of Working Party 1 of
ITU-T Study Group 5
Orange Polska S.A.

Introduction - Problems with fake news

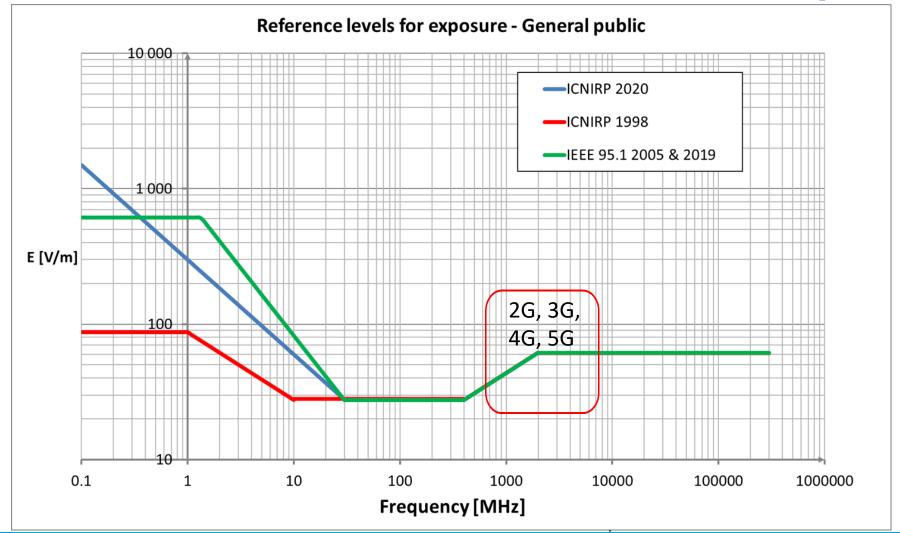

332 arson attacks across 21 countries (March 2020 to March 2021) Sweden: 2 Finland: 1 Netherlands: 36 United Kingdom: 170 Germany: 1 Ireland: 3 Canada: 7 Poland: 5 France: 62 Cyprus: 2 USA: 5 Belgium: 1 Greece: 1 Italy: 1 Peru: 8 Technicians held captive Sierra Leone: 1 Key Paraguay: 2 High arson Australia: 6 Low arson South Africa: 3 Bolivia: 3 Non-arson New Zealand: 17 © GSMA 2021

Source: The 10th GSMA EMF Forum 2021, Sarah Wylie, Vodafone

Introduction - Problems with fake news


- General public is very interested in the potential impact of Electromagnetic
 Fields (EMF) on health
- A large amount of fake news is widespread
- Proper information is required and ITU is deeply involved in this

Recommendation ITU-T K.83: Monitoring of EMF levels Very important for communication with general public



Introduction - Evolution of the international exposure limits

ITU's Mandate on EMF

ITU PP Resolution 176 - "Measurement and assessment concerns related to human exposure to electromagnetic fields" (Bucharest, 2022)

WTSA Resolution 72 - "Measurement concerns related to human exposure to electromagnetic fields" (Rev. Geneva, 2022)

ITU-T SG5, Question 3/5
Human exposure to RF EMF

3 SECTORS

WTDC Resolution 62 - "Assessment and measurement of human exposure to electromagnetic fields" (Rev. Kigali, 2022)

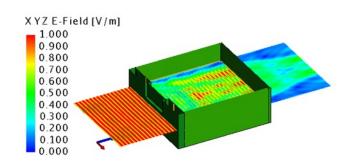
RADIOCOMMUNICATION

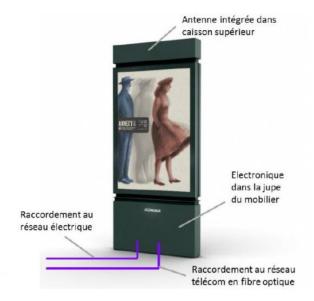
ITU-R Question 1/239 (Electromagnetic field measurements to assess human exposure).

ITU-T Study Group 5: EMF, environment, climate action, sustainable digitalization, and circular economy

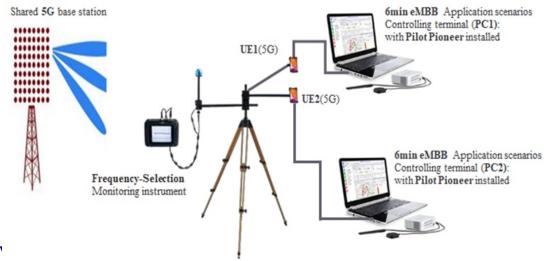
Lead Study Group 5 Roles:

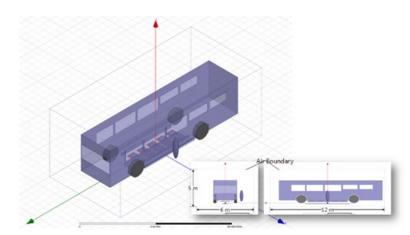
- electromagnetic compatibility, resistibility and lightning protection
- o soft error caused by particle radiations
- Chuman exposure to electromagnetic fields
- circular economy and e-waste management
- ICTs related to the environment, energy efficiency, clean energy and sustainable digitalization for climate actions


Q1 /5	Electrical protection, reliability, safety, and security of ICT systems		
Q2 /5	Protecting equipment and devices against lightning and other electrical events		
Q3 /5	Human exposure to electromagnetic fields (EMFs) due to digital technologies		
Q4 /5	Electromagnetic compatibility (EMC) aspects in ICT environment		
Q6 /5	Environmental efficiency of digital technologies		
Q7 /5	E-waste, circular economy, and sustainable supply chain management		
Q13 /5	Building circular and sustainable cities and communities		
Q8 /5	Guides and terminology on environment and climate change		
Q9 /5	Climate change and assessment of digital technologies in the framework of the		
	Sustainable Development Goals (SDGs) and the Paris Agreement		
Q11/5	Climate change mitigation and smart energy solutions		
Q12/5	Adaptation to climate change through sustainable and resilient digital technologies		


Current studies in ITU-T SG5

- ITU-T K.peak: Comparison between peak and real exposure in the long-term considerations
- ITU-T K.reflection: Impact of the metallic structures for the EMF exposure level
- ITU-T K.Small: Small base stations impact on the overall exposure level
- ITU-T K.Zones: Guidance on Determining the Compliance Boundaries (the exclusion zone) of a Live Antenna
- ITU-T K.devices: RF EMF exposure assessment of the wireless radiocommunication devices operating close to the human body

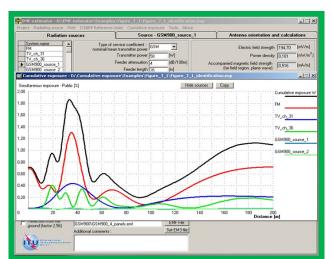


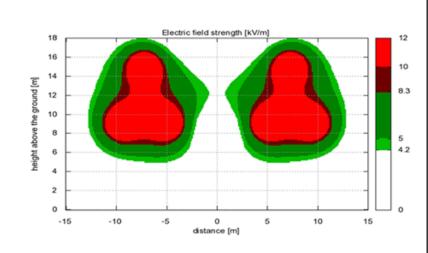


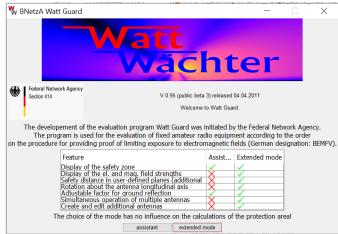
The last outcomes in ITU-T SG5

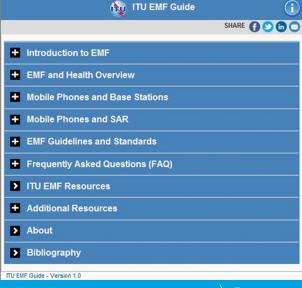
- Rec. ITU-T K.145: Assessment and management of compliance with radio frequency electromagnetic field exposure limits for workers at radiocommunication sites and facilities
- **K Suppl. 19**: Electromagnetic field (EMF) strength inside underground railway trains
- K Suppl. 20: Supplement on radiofrequency exposure evaluation around underground base stations
- K Suppl. 29: Electromagnetic field strength inside and outside of electric vehicles using wireless power transfer technology
- K Suppl. 32: Case studies of radio frequency- electromagnetic field (RF-EMF) assessment

Participation in ITU-T SG5 activities in RF EMF


- All entities are encouraged to participate in ITU-T SG5 meeting
- Active participation through contributions is welcomed
- Contributions may have different forms:
 - Results of RF EMF measurements
 - Results of RF EMF compliance assessment
 - Evaluation methods
 - Questions and problems
- All ITU-T outcomes are based on received contributions
- All ITU-T Recommendations and Supplements are freely available






Additional tools: software and mobile Applications

- 11 ITU-T Recommendations and 10 ITU-T Supplements (see Appendix)
- The use of the ITU-T documents is supported by additional tools
- Software:
 - EMF-estimator (K.70)
 - EMFACDC (K.90)
 - Uncertainty calculator and Watt_Guard (K.91)
- Mobile Applications
 - EMF-guide (Suppl. 1)
 - EMF Exposure (on website)

Conclusions

- ITU is very active in sharing knowledge and tools concerning the assessment of human exposure to RF EMF
- Good communication with public is a very important task
- Efficient deployment of wireless infrastructure reduces the RF EMF exposure from networks and devices

Thank you!

Website

SG5: Environment, climate change and circular economy

Appendix

ITU-T Recommendations in force

ITU-T Rec. Number	Title	Year
K.52	Guidance on complying with limits for human exposure to electromagnetic fields	2021
K.61	Guidance to measurement and numerical prediction of electromagnetic fields for compliance with human exposure limits for telecommunication installation	2018
K.70	Mitigation techniques to limit human exposure to EMF's within vicinity of radiocommunication stations	2020
K.83	Monitoring of the electromagnetic field levels	2022
K.90	Evaluation techniques and working procedures for compliance with exposure limits of network operator personnel to power-frequency electromagnetic fields	2018
K.91	Guidance for assessment, evaluation and monitoring of the human exposure to radio frequency electromagnetic fields	2022
K.100	Measurement of human exposure levels when a wireless installation is put into service	2021
K.113	Generation of radiofrequency electromagnetic fields (RF-EMF) level maps	2015
K.121	Guidance on the Environmental Management for Electromagnetic Radiation from Radiocommunication Base Stations	2018
K.122	Exposure levels in the close proximity of the radiocommunication antennas	2016
K.145	Assessment and management of compliance with RF EMF exposure limits for workers at radiocommunication sites and facilities	2020

ITU-T Supplements in force

Work item	Title	Year
K Suppl. 1 to K.91	Guide on electromagnetic fields and health	2021
K. Suppl. 4 to K.91	Electromagnetic field considerations in smart sustainable cities	2018
K Suppl. 9	5G technology and human exposure to RF EMF	2019
K Suppl. 13	Radiofrequency electromagnetic field (RF-EMF) exposure levels from mobile and portable devices during different conditions of use	2021
K Suppl. 14	The impact of RF-EMF exposure limits stricter than the ICNIRP or IEEE guidelines on 4G and 5G mobile network deployment	2019
K Suppl. 16	Electromagnetic field (EMF) compliance assessments for 5G wireless networks.	2022
K Suppl. 19	Electromagnetic field (EMF) strength inside underground railway trains	2019
K Suppl. 20	RF Exposure evaluation around base station installed underground	2021
K Suppl. 29	EMF strength inside and outside of electric vehicle using wireless power transfer (WPT) technology	2022
K Suppl. 32	Case studies of radio frequency- electromagnetic field (RF-EMF) assessment	2022

