ITU Workshop on
Software Defined Networking (SDN)
Standardization Landscape
(Geneva, Switzerland, 4 June 2013)

"Deeply Programmable Network"
Emerging Technologies for Network Virtualization
and Software Defined Network (SDN)

Akihiro Nakao
Associate Professor
The University of Tokyo
nakao@nakao-lab.org
Future Network Research Proliferating...

- Future Internet Architecture (FIA) in U.S.
- Global Initiative in Network Innovations (GENI) in U.S.
- Framework Programme 7 (FP7) in EU
- Horizon 2020 (2014-) in EU
- New Generation Network (NwGN) in Japan
How can we resolve newly observed, constantly arising problems in the current Internet?

- Economic DDoS Attack
- Wired-Wireless Convergence
- Named Content ID-Locator Separation
- Content Oriented Access
- Sensor Data Processing
- Security Vulnerability
- Sub-optimal Data Center NW
- Access & Data Convergence

The University of Tokyo Confidential
Emerging Areas of Study in Future Network Research

Introducing “programmability” into networking to flexibly and dynamically resolve constantly arising contemporary issues.

- Network Virtualization (NV)
- Software Defined Network (SDN)
- Network Functions Virtualization (NFV)
- And more?
Network Virtualization

In computing, network virtualization is the process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Network virtualization involves platform virtualization, often combined with resource virtualization.


... the “advanced network virtualization”, govern a collection of the resources ranging from links, networks, and node-software as a slice and create a virtualized network over the slice with dynamically controllable and programmable links and nodes.

[http://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf](http://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf)
SDN

- **Software Driven Network** (IETF BoF)
- **Software Defined Network**
- **Some Definition Needed :-)**

Software-defined networking (SDN) is an approach to building computer networks that separates and abstracts elements of these systems.

SDN decouples the system that makes decisions about where traffic is sent (the control plane) from the underlying system that forwards traffic to the selected destination (the data plane)...

http://en.wikipedia.org/wiki/Software-defined_networking

SDN enables programmability for control-plane so that OPEX in network operation and management can be reduced through automation...

Aki Nakao 2013
Standardization Activities

- ITU-T on Future Networks / Network Virtualization
- ETSI on Network Functions Virtualization (NFV)
- IETF BoF on Software Driven Networks (SDN)
- IRTF BoF on Network Virtualization
- IETF WG on Interface to Routing System (I2RS) (conceptually similar to SDN)
- ONF (Open Networking Foundation) on Software Defined Networks (SDN) /OpenFlow
- OpenDaylight on Software Defined Networks (SDN)
Deep Programmability within Network

- **Application Programmability**
  - OpenFlow
  - SDN
  - OpenDaylight

- **Control-Plane Programmability**
  - Interfaces
  - Functions
    - Route Control
    - Access Control
    - Network Management

- **Data-Plane Programmability**
  - Interfaces
  - Functions
    - Packet Data Processing
      - Network Appliances (DPI, BRAS, EPC)
      - In-Network processing (Cache, Transcode)
      - Wide-Area generic processing
    - Handling New Protocols
      - IPvN (N>6), New Layer2, CCN

*The University of Tokyo Confidential*
Discussions necessary at ITU-T

Existing standardization activities

- Network Virtualization (NV)
- Software Defined Network (SDN)
- Network Functions Virtualization (NFV)

Further study and standardization needed at ITU-T (SG13, SG11 or FG-DPN)

- Systematic view and organization of related technologies (NV, SDN, NFV and DPN)
- Deeply Programmable Network (DPN) Technologies
  - Programmability for in-network processing
  - Programmability for new (non-IP) protocols
  - Data-Plane Programmability Interfaces
  - Accommodation of multiple isolated programmable environments

These missing pieces should be studied among industries and academia (GENI, FIA, FP7 NwGN related academia)
DPN Research: FLARE
OpenFlow Switch

Although flexible control is achieved to some extent...

- Complex processing not supported
- Non Internet protocols not supported
- L7 pattern match not supported
- Proprietary actions cannot be executed
- Proprietary API cannot be added

Data-plane programmability
- New protocols
- New classification
- Proprietary actions
- Proprietary APIs (re)definition
Challenges:
- Tradeoff between performance and flexibility
- Ease of programming
- Supporting multiple protocols/instant switch/concurrent use
Multiple Fully Programmable Layers (Slivers)

“Resource virtualization” within a single node enables multiple switching logics/controls
FLARE Node Architecture
(multiple fully programmable slivers)

Fully Programmable

Programmable Control Plane

Programmable Data Plane

Virtual Ports

Physical Ports

Node Manager

Packet Slicer

Sliver N

Sliver 2

Sliver 1

The University of Tokyo Confidential
FLARE Node Implementation

- Multiple, isolated, deeply programmable environments
- OS Virtualization on many-core processor (D-plane) and x86 processor (C-plane)
- Multi 10Gbps ports
- 1U / 1U Mini Form Factor
- Control Plane & Data Plane Linux Programmability
- Flexible programmability and reasonable performance
The University of Tokyo Confidential
Multi-Threaded Modular Programming
e.g., Click Software Modular Router (multi-threaded)

• Arbitrary switch logic(s) can be implemented
Ethernet Switch

```
FromGxIO (xgbe1)  Ether Switch  ToGxIO (xgbe2)
```

Switching Performance

<table>
<thead>
<tr>
<th></th>
<th>1 core</th>
<th>2 cores</th>
<th>3 cores</th>
<th>4 cores</th>
<th>5 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkt_size=512B</td>
<td>4.2</td>
<td>7.8</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>pkt_size=1514B</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
</tr>
</tbody>
</table>
OpenFlow

Control Plane
- dpctl
- ofprotocol

Data Plane
- FromIO (xgbe1)
- ToIO (xgbe2)
- FromIO (xgbe2)
- ToIO (xgbe1)

Switching Performance
- pkt_size=512B
- pkt_size=1514B

The University of Tokyo Confidential
What can we do with FLARE that others cannot do in a simple manner?
Multiple SDN Logics (OpenFlow 1.3 and OpenFlow 1.0)

IPv6

video
client

IPv6
Client #1

video
client

IPv6
Client #2

IPv4

video
client

IPv4
Client #1

IPv4
Client #2

10GbE

GbE

FLARE2 1

NOX1

NOX2

IPv4

video
client

IPv4
Server

IPv6

video
server

IPv6

VLC
Server

The University of Tokyo Confidential
Multiple SDN Logics

Purpose:
Dynamically changing SDN control logics for different flow spaces

Benefit:
Instant upgrade/downgrade of switching software
Incremental upgrade while keeping compatibility with old technologies
Enable “evolve-able” network architecture

Solution:
FLARE can implement multiple SDN logics (southbound APIs) in slivers
Window-based Arbitrary Bit Matching

Arbitrary bit matching as in openflow pattern matcher is costly due to expensive memory operation per packet

Set a window to minimize per-packet memory operations. Improve performance while keeping flexibility.

Window-based Arbitrary Bit Matching
e.g., RTP-SSRC Matching

Purpose:
Specific Real-time audio/video traffic control, based on “stream”, not “flow” (e.g. based on RTP SSRC field to enable routing according to the streaming-video IDs )

Benefit:
Application/Content specific routing

Solution:
Use window to extract information included in RTP headers
L7 Switching and In-Network Processing

L7 Switching

FLARE supports deeply programmable SDN solutions such as arbitrary-bits and arbitrary offset matching and definition of proprietary APIs achieving both flexibility and performance.

In-Network Processing

Video transcoding can be preformed in real time on either D-plane (many-cores processor) or C-plane (Intel-CPU).
Window-based Arbitrary Bit Matching
e.g., Trailer Matching

Purpose:
Device/application/content specific traffic engineering

Benefits:
More specific recognition for packets bound to overly used TCP port (e.g., 80)
Traffic engineering for data transmitted from specific devices
Network Virtualization for non-IP protocols!

Solution:
After attach/detach trailers, establish control in intermediate FLARE switches
Window-based Arbitrary Bit Matching
e.g., Trailer Matching

Trailer is an extra section attached at the end of each packet

End/Edge nodes are responsible for attaching and detaching Trailers

Network Virtualization with Trailer Slicing

- SERVER1
  - vm1
  - vm2
- SERVER3
  - vm3
  - vm4
- SERVER5
  - video server
- SERVER2
  - SID MUX
  - Vm1'
- SERVER4
  - ExMAC
  - vm3
  - Live Migration
- SERVER6
  - video client

The University of Tokyo Confidential
Drastic Examples
L2 Programmability
Extended (96bit) MAC switching

Traditional Ethernet Frame:

DMAC (48bits)  SMAC (48bits)  Type  IP PayLoad

Extended Ethernet Frame with Extended MAC:

DMAC (96bits)  SMAC (96bits)  Type  IP PayLoad

Prototype with Click

FromDevice (tap0)  Strip(14)  ExEtherEncap  ExEtherSwitch

FromDevice (tap1)  Strip(14)  ExEtherEncap

Strip(26)  EtherEncap  ToDevice (tap0)

Strip(26)  EtherEncap  ToDevice (tap1)
L2 Programmability
Extended (96bit) MAC switching

Switch Performance
The University of Tokyo Confidential
L2 Programmability
Extended (96bit) MAC switching

Purpose:
• Demonstrating “Clean-Slate” programmability even for L2 protocols
• Possibly alternative to VXLAN for mitigating MAC address exhaustion
  for supporting a large number of tenants in data center networks

Benefit:
MAC address extension keeping transparency for IP applications

Solution:
FLARE can literally provide “deep programmability” in data-plane,
even in L2.
Non-IP protocol
Non-IP protocol

Purpose:
Develop and operate Non-IP protocols over a network

Benefit:
Enable non-IP protocol development for research community

Solution:
FLARE can be used to program data-plane as well as control-plane for Non-IP protocols (that requires data-plane programming)
FLARE at ITPro EXPO 2012
Beyond OpenFlow/SDN
MPLS 2012
(with Cisco & Juniper)
IM2013 Keynote
iPoP 2013 Business Session
Platinum Booth
LivingLab @ NakaoLab

Living with Deeply Programmable FLARE

Living Lab Control Plane

Living Lab Data Plane

Blue RJ45 ports (CAT6)

102

105

106

107

005 L2 SW

S

J

G

FC

402

F

1

S

F

1

2

005 Patch Panel

Fiber Port

Fiber Port

402
Conclusion

• **Deep Programmability** refers to the extensive programmability including Control-plane, Data-plane (including non-IP handling), (re)defining APIs in SDN, etc.

• **Deeply Programmable Network** research encourages “clean-slate” thinking and redesigning the network and lifts the limitation in traditional networking and even in the current SDN

• Standardization on deep programmability within the network is yet to be done
Credits

• FLARE Project Team @ UTokyo
  • Aki Nakao
  • Shu Yamamoto
  • Ryota Ozaki
  • Ping Du
  • Eiji Miyagaki
  • Haruki Denpo
• NICT & MIC for Funding the Project(s)