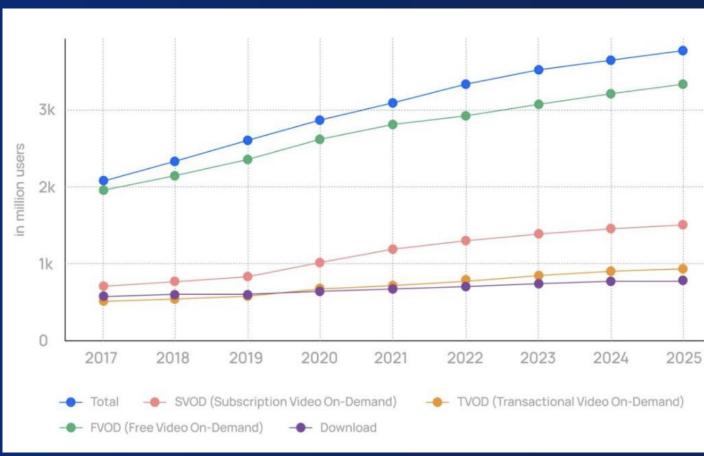
Enhancing Over-The-Top (OTTs) service quality and connectivity assessment in mobile networks

ITU Workshop on "Telecommunication Service Quality"

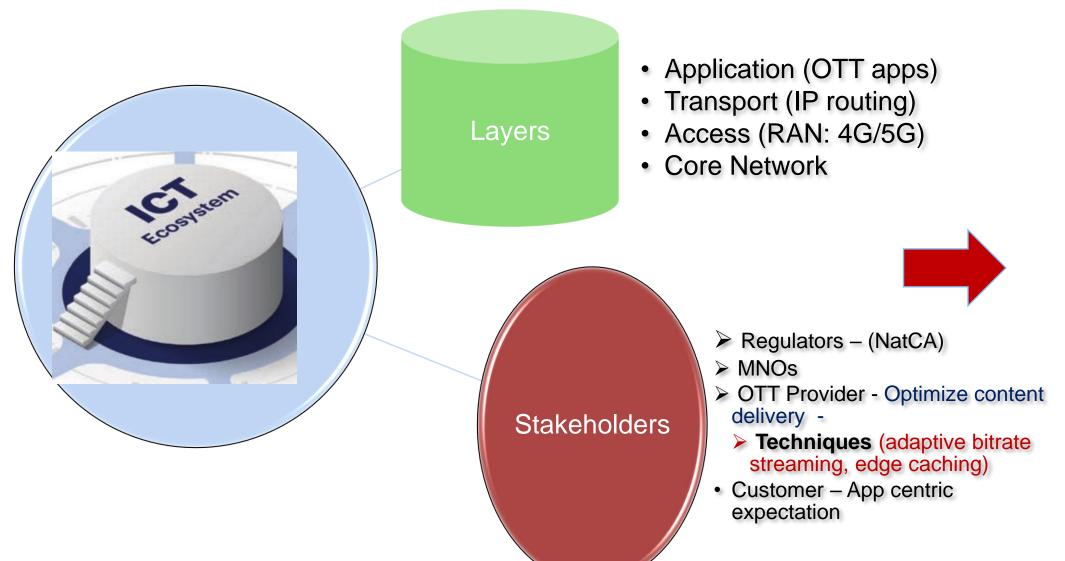
Freetown, Sierra Leone,

July 2025

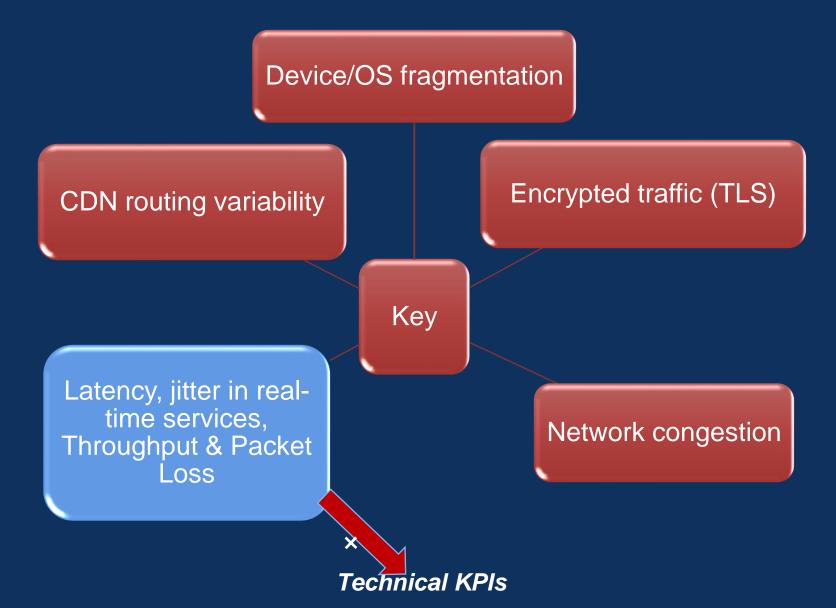
Gibril Njai


Ernest Bai Koroma University of Science and Technology (EBKUST), Faculty of Engineering and Technology, Magburaka

Introduction

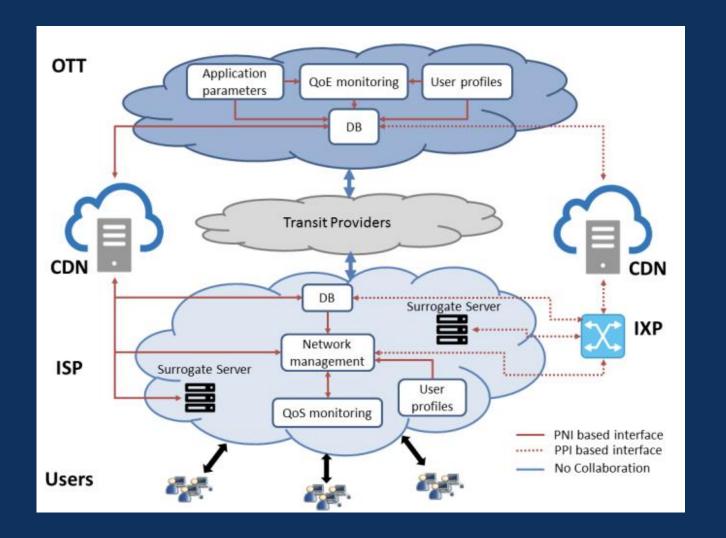

- Over-The-Top (OTT) services
 - refers to Apps like Netflix, WhatsApp, YouTube delivered over the internet that bypass traditional network operators.
 - > 70%+ of mobile data traffic is OTT
 - Generally, users expect high performance regardless of network - no longer signal strength or call drop rates
 - ✓ Hence, Quality of Service (QoS) and accurate Quality of Experience (QoE) assessments is technically complex.

The Rise of OTTs – wings of fire



https://www.uscreen.tv/blog/ott-statistics/

OTT & Mobile Network Ecosystem



Key Challenges in OTT Service Delivery

To address CDN routing variability challenges

- Arslan et al proposed a QoE-aware collaboration approach
 - Joint optimization on both network
 and application sides basis of
 economic factors

OTT QoS/QoE Assessment Methods

Passive Monitoring

Technique

- Deep Packet Inspection (DPI),
- Flow analysis
 - Traffic flow inspection

Use Case

Assessing overall traffic patterns and identifying service bottlenecks

Active Testing

Technique

- QoS test probes synthetic traffic generation
- > iPerf
- ➤ Ping
- Drive test

Use Case

Simulating WhatsApp calls or YouTube streaming to benchmark latency, jitter, and buffering

Hybrid Crowdsourced Data

Technique

- NetProbe
- OpenSignal
- Netradar

QoE variation across geographies

Use Case

Capturing QoE trends across rural and urban settlement or peer benchmarking

Drive Testing

Technique

Useful for benchmarking OTT service performance geographically. network-level performance metrics

Case Use Case

Monitoring session drops, codec adaptation, or usertriggered retries

QoS Techniques

OTT QoS/QoE Assessment Methods

Subjective Testing

Technique

- Mean Opinion Score (MOS) surveys
 - field tests with user panels.

Objective QoE Model Testing

Technique

- Estimate MOS from QoS metrics.
 - ➤ ITU-T P.1203 (for video), VMAF (Netflix), PSNR, SSIM.

Analytics from OTT Apps

Technique

- SDKs embedded in OTT applications.
 - Metrics: playback errors, resolution changes, time to first frame.

QoE Techniques

Practical Insights

Use Case: Enhancing OTT Service Quality in West Africa

Use case

- Rapid rise in YouTube and
 Netflix consumption in
 urban zones at 6 10pm.
 - triggers increasedbuffering and latency

Improve Quality of Experience (QoE) and reduce customer complaints

Technique

- Passive Monitoring
- Active Testing
- > KPI Analysis

Tools

- ➢ QoE Engines, DPI
- Drive Tests, Test UEs
- Latency, Throughput
- High buffering ratio during peak hours
- > DNS delays, server path suboptimal
- Backhaul congestion, weak RSRP in clusters

Outcome

- **> Buffering Incidents** ↓ 34%
- **→ Video Startup Time** ↓ 1.2 seconds
- > User Satisfaction ↑ 20+ pts

Lessons Learned

- > MNO OTT collaboration is essential
- ➤ QoE + QoS = full visibility
- > MEC enhances OTT experience
- > Monitor continuously, not occasionally
- > Content localization drives bandwidth constrained areas

Conclusion

- OTT ecosystem complexity requires cross-layer visibility
- Passive and active monitoring are complementary tools
- QoS & QoE assessment must be continuous and dynamic (align with evolving regulatory standards
- Prioritize user-centric metrics that reflect perceived quality, not just technical performance.
- Clear regulatory framework that encourage transparent quality reporting, net neutrality compliance, and OTT-MNO collaboration

THANK YOU