

Assuring QoS and QoE in 5G networks

ITU WORKSHOP ON NETWORK PERFORMANCE

Graham Kemp	2019.03.02	
Keysight Nemo		

1.02415

5G NR challenges

- 5G means new use cases, environments and network dimensions
 - Higher capacity and peak rates
 - Mission Critical with 1 ms latency
 - Massive Number of Devices and network load scenarios
 - Higher frequences → more unreliable connection
 - Beam forming changes the network coverage concept
- QoE analysis for data connection require E2E visibility
- 5G creates more demanding test cases for QoS measurements and testing setups
- Evolving and new applications and use cases will require new QoE models and new QoE concept. Need KPIs and QoS parameters for interactivity and continuity
- Focus for test automation to enable repeatability and statistical meaningful results
- Measure 5G with phone own MIMO antennas

EYSIGH1

Mic

 Need equal RF and thermal conditions to get comparable, scientific and accurate results

NGMN 5G NR test cases for each use case type

e ð Amphenol amdocs at&t envision: ensure Be 中国移动 中華電信 Chunghwa Telecom HUAWEI 工業技術研究院 Industrial Technology Research Institute KEYSIGHT TECHNOLOGIES ERICSSON 💋 NEC NOKIA Κτ orange 1)p P3 ROHDE&SCHWARZ SK telecom COMMSCOPE TURKCELL vodafone **KEYSIGH1**

List of contributing, reviewing and supporting companies

ECHNOLOGIES

Identifier	Use Case	Description		
VR	Virtual <u>Reality</u>	Based on mobile phone-based or dedicated VR gear		
GA	Gaming	Used in mobile phones or connected <u>consolles</u>		
AR	Augmented Reality	For mobile phones or AR glasses/head gear		
CS Content Distribution Streaming Services		Typical streaming service in DL. This includes content on demand as well as live streaming.		
LS	Live <u>Streaming</u> <u>Services</u>	Modern user-based streaming in UL. Examples in Facebook live, Periscope		
SN Social Networking		Content posting in online platforms		
HS	High <u>Speed</u> Internet	Traditional browsing or files up/download		
PM	Patient Monitoring	Transmission of life critical and/or low latency medic data		
ES Emergency Services		Emergency services such as «panic button», communication with emergency dispatch center		
SM	Smart Metering	Deployed metering sensors, mostly IoT devices.		
SG	Smart Grids	Electricity meters and actuators for grid management		
CV	Connected Vehicles	Services for V2X interconnection, road safety, road traffic management and steering		

Downlink and uplink data rates and e2e latencies of 5G

5G enabled user experience requirements

- The 5G system should be able to deliver a consistent user experience, defined by service-dependent minimum KPIs
- When considering latency requirements, the following metrics are considered:
 - E2E Latency: Measures the duration between the transmission of a small data packet from the application layer at the source node and the successful reception at the application layer at the destination node plus the equivalent time needed to carry the response back
 - User Plane Latency: Measures the time it takes to transfer a small data packet from user terminal to the Layer 2 / Layer 3 interface of the 5G system destination node, plus the equivalent time needed to carry the response back

(EYSIGH)

Use case category	User Experienced Data Rate	E2E Latency	Mobility	
Broadband access in	DL: 300 Mbps	10 ms	On demand,	
dense areas	UL: 50 Mbps		0-100 km/h	
Indoor ultra-high	DL: 1 Gbps,	10 ms	Pedestrian	
broadband access	UL: 500 Mbps			
Broadband access in	DL: 25 Mbps	10 ms	Pedestrian	
a crowd	UL: 50 Mbps			
50+ Mbps everywhere	DL: 50 Mbps	10 ms	0-120 km/h	
	UL: 25 Mbps			
Ultra-low cost	DL: 10 Mbps	50 ms	on demand: 0-	
broadband access for	UL: 10 Mbps		50 km/h	
low ARPU areas				
Mobile broadband in	DL: 50 Mbps	10 ms	On demand, up	
vehicles (cars, trains)	UL: 25 Mbps		to 500 km/h	
Airplanes connectivity	DL: 15 Mbps per user	10 ms	Up to 1000	
	UL: 7.5 Mbps per user		km/h	
Massive low-	Low (typically 1-100 kbps)	Seconds to hours	on demand: 0-	
cost/long-range/low-			500 km/h	
power MTC				
Broadband MTC	See the requirements for the Broadband access in dense areas and 50+Mbps			
	everywhere categories			
Ultra-low latency	DL: 50 Mbps < 1 ms		Pedestrian	
_	UL: 25 Mbps			
Resilience and traffic	DL: 0.1-1 Mbps	Regular	0-120 km/h	
surge	UL: 0.1-1 Mbps	communication: not		
	-	critical		
Ultra-high reliability &	DL: From 50 kbps to 10 Mbps;	1 ms	on demand: 0-	
Ultra-low latency	UL: From a few bps to 10 Mbps		500 km/h	
Ultra-high availability	DL: 10 Mbps	10 ms	On demand, 0-	
& reliability	UL: 10 Mbps		500 km/h	
Broadcast like	DL: Up to 200 Mbps	<100 ms	on demand: 0-	
services	UL: Modest (e.g. 500 kbps)		500 km/h	

Estimating QoE MOS for 5G use cases

The 5G system should be able to deliver a consistent user experience, defined by servicedependent minimum KPIs

ontinui

- MOS per each new 5G use case calculated based on the same underlying measurement techniques
- Use repeatable and automated technical measurements (RF, IP, Application level)
- Based on measured KPI's, solution can predict a separate MOS value for each new 5G use case

Mobile Network QoE Assessment Challenges

LACK OF VISIBILITY

- No visibility to end to end QoS in current mobile networks
- Currently available network datafeeds and tools provide technical KPIs that do not translate to the QoE
- Passive device agents and network side passive monitoring provide more user behavior related data than quantifiable QoE KPIs
- Active, controlled device end testing is the only way to get accurate picture of the QoE

User level

RAN level

IP level

Time

5G network slicing introduce challenges for QoE verification

Dedicated slices for authorities use

A slice for mission

critical IoT with ms

level latency

(EYSIGH1

Slices for ultra reliable connections

- Network slicing replaces the QoS profiles used in LTE
- Network can adopt relevant QoS settings for each app
- lower level traces won't directly indicate user level drops
- → Need to perform on-device measurements to assess the QoE of sliced 5G network

visible in lower level traces

MOS score for 5G slices based on real UE measurements

PERFORM MEASUREMENTS FROM REAL END-USER PERSPECTIVE

- Measure QoE of 5G NR network slices by performing measurements in the UE
- Require a solution which performs ondevice measurements where all services and data protocols are <u>running in a smartphone</u>
- Measure with commercial 5G nonrooted phones

Success % DL & UL speed Delay, Drop rate, throughput - and tens more

Benefits

- Performs QoE measurements from real end-user perspective
- Provide insights to the real QoE
- Uses the real IMS/VoLTE protocols, settings and OTT applications of the UE in the very same way as the real consumer would use those

Real 5G UE QoS + QoE Benchmark

- Performance of three 5G devices compared on a live 5G network
- Network: LTE 1800 10MHz + 20MHz + 5G NR 100Mhz n78 band
- ZTE Axon and Note 10 Qualcomm X50 5G modem
- Huawei Mate 20 HiSilicon modem

	Rank	Avg App Throughput DL	Mobility Coverage (Avg- SSB-RSRP)	Mobility Quality (Avg SSB-SINR)
Device 1	1	298Mbps	-87.84dBm	17.41dB
Device 2	2	270Mbps	-89.86dbm	11.15dB
Device 3	3	235Mbps	-92.72dBm	12.09dB

Huawei Mate 20 ZTE Axon Samsung Galaxy Note 10 Plus 5G

Performance differences exists between the devices, both across the chipsets, as well as devices with same chipset

10

KEYSIGHT TECHNOLOGIES Mic

Thank You

1.50.22

Additional Info

1.50.22

5G NR – Beam Based Network Coverage

- Paradigm shift from cell based network coverage to beam based network coverage
- Major challenge for operators and NEMs to verify and understand the network coverage on the field
- Higher frequencies (FR1, FR2) and smaller cell sizes - more demanding in propagation manner and have impact on QoS - accessibility and reliability

Understanding the mmWave Signal Propagation

LINE OF SIGHT, BLOCKAGE, SHADOWING

- Propagation characteristics of mmWave radio signal are getting closer to visible light
 - High blockage even from small objects such as trees
 - Strong reflections
 - High shadowing loss
- Seeing even the smallest objects of the environment in 3D together with the signal helps to understand the signal propagation

Throughput Increase of 5G – A Free Lunch?

- Spectrum is the scarce resource of telecommunications
- Link level spectral efficiency of HSDPA, LTE, and 5G is about the same - They are all close to Shannon's limit
- Link throughput can be only increased by
 - 1. Increasing bandwidth

KEYSIGHT

- 2. Add MIMO layers (new parallel radio links)
- System capacity can be increased

Claude Shannon (April 30, 1916 – February 24, 2001)

The Shannon limit: maximum data rate at which error-free communication over the channel can be performed

$$C = W \log_2 \left(1 + \frac{S}{N} \right) \quad \text{[bits/s]}$$

Various MIMO Modes

Feature	3GPP/LTE Transmission mode	Description			
SU-MIMO (Single User)	5G: max 8x8 MIMO LTE Rel8: TM3,TM4 4x4 MIMO, 4x2 MIMO, 2x2 MIMO	Multiple data streams send to UE, increasing the peak throughput of individual user, 2x2 MIMO doubling, 4x4 MIMO quadrupling the throughput			
MU-MIMO (Multi-User)	5G: Max 12 layers LTE; Max 8 layers (TM9)	Multiple data streams sent in same frequency/time resource block, one for each UE. Increases total cell throughput (capacity).			
Massive MIMO	5G 64Tx TM9(LTE Rel9) 16TX(LTE Rel13), 32TX(LTE Rel14)	#antennas>>#users. MU-MIMO, SU-MIMO, and analog beamforming. High number of antennas improves the MU- MIMO performance			
 Presentation 					

5G Theoretical Max Data Rates

data rate(in Mbps) = $10^{-6} \cdot \sum_{j=1}^{J} \left(v_{Layers}^{(j)} \cdot Q_m^{(j)} \cdot f^{(j)} \cdot R_{max} \cdot \frac{N_{PRB}^{BW(j),\mu} \cdot 12}{T_s^{\mu}} \cdot (1 - OH^{(j)}) \right)$

- No UE categories with fixed data rates in 5G
- Spec allows 8x8 SU-MIMO (Rank 8), in practise devices support Rank 4.
 - Not to be confused with max 12 MU-MIMO layers defined by spec
- Chip/device vendors not indicating peak rates

EYSIGH⁻

• Real max data rates of 850Mbps seen in tests @100MHz BW, 256QAM, 4x4 MIMO

Theoretical bit rates for TDD 5G NR, 12/2 (DL/UL) symbol allocation

Freq	Bandwidth	SCS	Modulation	Rank	DL rate	UL rate	
FR1	20MHz	15kHz	256QAM	1	98Mbps	18Mbps	
FR1	20MHz	15kHz	256QAM	1	194Mbps	34Mbps	
FR1	100MHz	30kHz	256QAM	1	500Mbps	90Mps	Most common
FR1	100MHz	30kHz	256QAM	4	2Gbps	358Mbps	config in FR1, 850Mbps DL
FR2	100MHz	60kHz	256QAM	4	1.848Gbs	338Mbps	max seen in real-life tests
FR2	400MHz	120KHz	256QAM	4	7.388Gbps	1.352Gbps	

- J = number of component carriers
- Rmax = 948/1024m max code rate
- v = number of SU-MIMO layers (i.e. Rank), max theoretical 8, max supported by devices currently is 4
- Q = Bits per modulation symbol; 1 for BPSK, 2 for QPSK, 4 for 16QAM, 6 for 64QAM, 8 for 256QAM
- f = Scaling factor (1, 0.8, 0.75 or 0.4), signaled via higher layers
- $N \frac{BW(j),\mu}{PRB}$ = Max number of resource blocks. Derived directly from the available bandwidth.
- T_s^{μ} = Average symbol duration
- μ = Subcarrier spacing, 0 for 15 kHz SCS, 1 for 30 kHz SCS, 2 for 60 kHz SCS, 3 for 120 kHz SCS
- OH = Overhead due to signaling information
 - 0.14, for frequency range FR1 for DL
 - 0.18, for frequency range FR2 for DL
 - 0.08, for frequency range FR1 for UL
 - 0.10, for frequency range FR2 for UL

3D Visualisation of beams

- Visualize 5G beams measurements in 3D
- Measurement data collected with drive test or with drone
- Use cases
 - mmWave signal propagation verification detailed knowledge of the environment, signal blockage of trees, buildings, etc. is needed
 - Horizontal and vertical beam's coverage verification via drone measurements
 - Verifying the coverage for drone flight paths (drones requiring cellular connection to ground station)
 - Demo purposes for gNB vendors to present their gNB's beam forming capability to their customers and public

KEYSIGHT TECHNOLOGIES

MicUex