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 Selected enablers for QoE assurance

→ Traffic prediction

→ Radio maps

→ Interference management 

→ Localization

 Anomaly detection

→ Human-in-the-loop
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Outline
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Video streaming                                                                                       mmWave Networks

 Key ingredients:
● Traffic prediction
● Radio maps
● Interference management / self-organizing networks
● Localization
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Examples 
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 Useful information is spread over a large area

Questions:

  1) Size of the training sets

  2) Distributed, centralized, or hybrid approaches 

  3) Standards for information exchange among

network elements

 Networks are complex systems with highly coupled and dynamic interference patterns

1) Improving QoE/QoS in a given region may decrease the performance in every other region of the network  

2) Traditional models can be inaccurate – should we discard them?
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Use cases - Challenges
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Message 1: Do not try to learn too much
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Short/medium term traffic forecasts

Voice traffic Data traffic
Source: R. L. G. Cavalcante, S. Stanczak, M. Schubert, A. Eisenblätter, and U. Türke, "Toward Energy-Efficient 5G Wireless 
Communication Technologies," IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 24-34, Nov. 2014
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Forecasts

Exact values are hard to predict, but upper bounds 
(with strong statistical guarantees) are easy
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Message 2: Use knowledge gained from models
and any available side information
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 Objective: Given a traffic demand, what is the load at each cell (fraction of used resources)?

 Challenge: Highly dynamic wireless environment (propagation loss, interference patterns, etc.)  

→ Not enough time to train traditional learning tools

 Models can be inaccurate, but they reveal important features of the function being learned:

→ Monotonicity (load increases with increasing rates)

→ Lipschitz continuity 

 We should exploit these properties in machine learning tools:

→ Reduced training time and increased robustness
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Load prediction



Wireless Communications 
and Networks

9

Load prediction

Number of training samples
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D. A. Awan,  R. L. G. Cavalcante, and S. Stańczak, "A robust machine learning method for cell-load approximation in wireless 
networks," in  Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018
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Pathloss reconstruction

- Kasparick M., R. L. G. Cavalcante, S. Valentin, S. Stanczak, and M. Yukawa, "Kernel-Based Adaptive Online Reconstruction of 
Coverage Maps with Side Information," IEEE Transactions on Vehicular Technology, vol. 65, no. 7, pp. 5461-5473, July 2016
- K. Oltmann, R. L. G. Cavalcante,  S. Stańczak, and M. Kasparick, "Interference Identification in Cellular Networks via Adaptive 
Projected Subgradient Methods," in Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, Nov. 2013
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Reconstruction of Radio Maps
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Message 3: Do not ignore the 
lower layers of  the communication stack
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 Choices made on the physical layer impose fundamental performance limits on the network 
performance

→ Machine learning tools cannot compensate for bad network designs
 The physical layer has a lot of useful information (currently unavailable at the network layer) 

Example: Channel covariance matrices and the angular power spectrum for localization
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Localization

- R. L. G. Cavalcante, L. Miretti, and S. Stańczak, "Error bounds for FDD massive MIMO channel covariance 
conversion with set-theoretic methods," in Proc. IEEE Global Telecommunications Conference (GLOBECOM), 
Dec. 2018
- L. Miretti, R. L. G. Cavalcante, and S. Stańczak, "Downlink channel spatial covariance estimation in realistic 
FDD massive MIMO systems," in Proc. IEEE Global Conference on Signal and Information Processing, Nov. 
2018
- L. Miretti, R. L. G. Cavalcante, and S. Stańczak, "FDD massive MIMO channel spatial covariance conversion 
using projection methods," in  Proc. IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), Apr. 2018
-Alexis Decurninge, Luis García Ordóñez, Paul Ferrand, He Gaoning, Li Bojie, Zhang Wei, Maxime Guillaud 
“CSI-based Outdoor Localization for Massive MIMO: Experiments with a Learning Approach,” International 
Symposium on Wireless Communications System (ISWCS), 2018 
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Message 4: Experts can beat machine learning tools
(depending on the application)
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 Challenges

→ Huge number of KPIs (spurious correlations are likely to be observed)

→ Missing and unreliable data (software bugs, overflowing counters, etc.)

 Many state-of-the-art machine learning tools do not provide statistical 
guarantees

 Let machines explain humans why each action is appropriate
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Anomally detection in networks
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o Time-series analysis (cluster 
operators with similar performance)

o Evolution of the performance of 

network elements over time.

Objective: Detect network regions with

performance issues

Challenges: Large number of (unreliable) 
time-series, misaligned data
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Visualization (1)
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o Automatic extraction of atypical network regions and key performance indicators

KPI index (detected region/KPI)
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Anomaly detection (1)
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Short/medium term forecasts

- Detect atypical days by also considering long term trends
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Anomaly detection (2)
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Thank you for your attention!

Contact:

www.hhi.fraunhofer.de/wn

Fraunhofer Heinrich Hertz Institute

Berlin, Germany
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http://www.hhi.fraunhofer.de/wn
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