

Enterprise Application of Autonomous UAVs: QoS & QoE from Modern Telecom Networks

ITU Workshop on Telecommunications Service Quality hosted by Turk Telekom in Istanbul

Rob Roy, EVP & GM TEOCO

Outline

About UAVs & UASs

Enterprise Application of Autonomous UAVs

Command & Control of Autonomous UAVs

Criticality of QoS & QoE for UAV Control

Regulatory Considerations

Summary

Unmanned Aerial Vehicles (UAV)

 Remotely piloted aircraft or systems

- Also known as Unmanned Aerial System (UAS)
- FAA (Federal Aviation Authority) uses UAS
- Commonly referred to as drones

UAV Characteristics

- Aviation system
 - Multirotor, Fixed wing, Hybrid, Flapped-wing
- Level of autonomy
 - Human-operated, Human-supervised, Fully-autonomous
- Size and weight classes
- Energy source
 - Battery, Fuel-cell, Solar

Enterprise UAVs: A Snapshot

UAVs Today

- Operated manually
- Visual Line of Sight (VLOS)
- Not scalable
- Human labor-intensive
- Human error-prone
- Lack of consistency

UAVs Tomorrow

- Autonomous
- Beyond VLOS
- Massive scalability & consistency
- Enterprise: Artificial Intelligence & Machine Learning

Manually Controlled Drones – Small Scale

Autonomous: Beyond Visual Line of Sight (BVLOS) – Enterprise Applications

Platform-based Drone-enabled Applications

Data Input

Airborne UTM Management Platform

- UAV handling/registration
- Mission creation
- Planning & Optimization
- Operation (#regulatory)
- Analytics

openapi

Web Cloud Machine Open based processing learning interfaces

UAV Services

First Aid

Tower inspect

Pipeline Inspect

Windmill Insp.

Public Safety

Cell on wing

Utilities

Agriculture Insurance

Command & Control for Autonomous Drones

- Drones need uninterrupted wireless connectivity
- VLOS ensures manual operation
- How to maintain connection for BeVLOS?
- Most viable answer:
 - Cellular Connectivity
 - Strongly advocated by CTIA

MNOs & Autonomous UAVs

Autonomous UAVs need connectivity for monitoring, command & control

CTIA: Cellular connectivity – easiest & cheapest

Licensed, robust, secure & ubiquitous

With 5G, latency is <10ms

Regulatory-compliant latency

Enterprise UAVs will require nano/pico SIM

Use Case example: Inspection as a Service

enhanced Precision Farming using 4G/5G

Outline

About UAVs

Enterprise Application of Autonomous UAVs

Command & Control of Autonomous UAVs

Criticality of QoS & QoE for UAV Control

Regulatory Consideration

Summary

QoS & QoE Requirements for Drone-flying

- Regulatory bodies like FAA in the US have strict requirements
 - Constant connectivity
 - Redundancy in Critical Areas
 - Extremely low-latency between command & actuation
 - Consequences and liabilities of impact
 - Lost Connection between drone and cell
 - ETSI CoS (Class of Service) has to be 4: QoS guaranteed

Autonomous Drones: Latency is Critical

5G Latency is going to be ~10 mSec -> ~1 mSec

Cellular Network for Autonomous Drones

- Airspace Control Govt bodies, e.g. FAA LAANC (Low Altitude Authorization and Notification Capability) have non-violable QoS requirements
- Network design should ensure support of these
- Network Slicing ensures support of varying requirements

- One of the key growing areas for
 - Connectivity

Summary

- Commercial Autonomous Drones are going to be huge growth segment
- They require cellular connectivity to drones
- Very strong QoS requirements due to regulatory
- Network designers must use all available techniques to meet requirements

5G: Announced Business Cases

Source: ADL, Aug 2017

