New Value Chains and Technical Issues for Future Data Eco-Society

Jun Kyun Choi

Professor, Korea Advanced Institute of Science and Technology (KAIST) jkchoi59@kaist.ac.kr

Value Chains of Data Eco-Society

Smart City Eco-System

Korea Advanced Institute of Science and Technology

Geographical Data

Data of Intelligent Transport System

(ref) https://smartercitieschallenge.wordpress.com/category/lagos-nigeria/

Overview of Smart Grid

Data Business for Smart Grid

Data Types for Smart Grid

ENERGY

CHARGING • ENERGY MANAGEMENT SYSTEMS ENERGY MONITORING • ENERGY GENERATION ENERGY EFFICIENCY • ENERGY BUSINESS MODEL GRID SOLUTIONS • ENERGY STORAGE & BATTERIES

TRANSPORTATION

NAVIGATION TRAVEL • TOURISM TRAFFIC • PARKING INTRA-CITY & INTERCITY TRIP PLANNING

LOGISTICS

SHIPPING & TRACKING END TO END TRACKING URBAN FULFILMENT HUBS LOGISTICS & DELIVERY • FLEET MANAGEMENT

SHARING

PUBLIC DATA TAXI & LIMOUSINE SHARING ECONOMY RIDESHARING & CARPOOLING

INFORMATION

TELEMATICS • CUSTOMER INTERACTION PORTALS, MARKETPLACES & SOCIAL NETWORKS SMART MAINTENANCE • ARTIFICIAL INTELLIGENCE BIG DATA & IOT • SECURITY & DRIVER ASSISTANCE **VEHICLES** SMART VEHICLES & E-MO

SMART VEHICLES & E-MOBILITY SMART CONSTRUCTION VEHICLES • DRONES INTERNET OF VEHICLES • AUTONOMOUS VEHICLES FUTURE TRANSPORT SYSTEMS • AEROSPACE VEHICLES

Telematics Data

Corea Advanced Institute of Science and Technology

Medical Data Visualization

What is the Language of Cyber World ?

Cyber Language		Physical Language	Natural Language
Language for Semantic Knowledge		Human Language	Human Language
Language for Platform		Language for Building, Road, Station, Airport, Hospital	Language for Monkey
Language for System and Application		Language for TV, Car, and Airplane	Language for Dolphin, Dog, Pig, Elephant
Operating System (OS)		Language for Hardware and software	Language for Mouse, Chicken, Bird
Machine Language (e,g., device driver)	١	Language for Components and Sensors	Language for Bee, Ant, Insect

Value of Data - 2

Collective Intelligence Technology Education Health, New Services Culture http://www.slideshare.net/ishahrour/ conference-of-isam-shahrour-smart-city-for-energy-transition-precop22 Tourism Mobility

KAIST

한국과학기술원 Kerea Advanced Institute of Science and Tec

Value of Data - 3

Big Data and Analytics Process

http://jtonedm.com/2013/06/05/big-data-and-analytics-fueling-competitive-advantage/

Who is the Winner at Data Eco-society ?

- Maximize data eco-environments or ecodomains
 - Maximize coverage and applications
 - Minimize conversion or interpretation overheads
- Win-Win approaches among stakeholders
 - Get synergy effects of all the stakeholders
- Get the values from collective intelligences
 - Find new values by knowledge accumulation of heterogeneous domains

Technical Issues for Data Technologies

Key Research Challenges for ICT

한국과학7

KAIST

Data as a Service

Web Scale Data Acquisition

http://www.thetechbulletin.com/promptcloud-big-data-crawlers-18384/

Converting Unstructured Data to Structured Data

Big Data Analytics

Low Latency crawls

Data Analytics Eco-system

KAIST

한국과학기술원 Korea Advanced Institute of Science and Technology

Data Governance

https://www.linkedin.com/pulse/nailing-down-data-governance-strategy-development-vimal-mani

orea Advanced Institute of Science and Technolog

Data Intelligence

Business Level

e.g. Smart City, Intelligent Manufacturing, M2M, CPS, Smart Appliances.

Application Level (+ domain specific) e.g. Dublin Core, FOAF, SSN and OpenIoT.

Semantic Level Existing vocabularies (e.g., NCI, SSN-XG) Other knowledge base and ontologies e.g. DBPedia, Geonames

Sensor Middleware Level owl:sameAs, rdf:seeAlso

Relationships: closeMatch, exactMatch, broadMatch, narrowMatch, relatedMatch Virtual Sensor Level e.g. X-GSN

Physical Level (Device Standards) e.g. IPv6, 6Lowpan, IETF CoAP

IoT Data Analytics

http://www.telecom-cloud.net/iot-big-data-networked-programmable-and-machine-learning/

Geospatial Data of OGC

Linked open Data (LoD) of Web

Approaches toward New Data Society

- Key Issues to realize New Data Society
 - How to utilize interactive power of computer and communications technology ?
- General Approaches toward New Data Society
 - Behavior Cycle for future human life and business culture
 - Open Environments for Network, Software, and Device
 - New data format to create, deliver, and consume
 - Eco-systems between physical society and cyber society
 - Intelligent emerging devices including smart phone, smart TV, smart car, smart building, and smart things, etc.

Creating New Data World

- Need new data types for knowledge society
 - (Mapping) Data types connecting physical world to cyber world
 - Identification/classification, Location, Status, Role/Function, etc.
 - (Example) GPS, address, serial no. etc.
 - (Interpretation) Data types for human understanding, meaning, interpretation, and translation, perception, recognition based on accumulated knowledge, reasoning, learning, action, behaviors, and experience
 - (Example) Pythagorean Theorem, know-how of medical treatments, etc.
 - (Visualization) Data types for communication, sharing, visualization, rendering, expression of word, image, gesture, etc.
 - (Example) icon, logo, graphic image, character sets,

Mapping between Physical world and Cyber world

Interpretation accumulated

knowledge, action, and experience

Visualization

word, image, icon, and gesture

Data Types depending on Applications

- Telecommunication and Broadcast Industry
 - Telephony, SMS, AV/Multimedia stream, and AR/VR, etc.

Internet and Web Industry

- File, image, documents, and social media, etc.
- Virtual/Object Data, and web of data
- Location related Industry
 - GPS, CPS, and physical 2D/3D geographic location
 - Transport and Logistics (Geolocation Map)
- Identification related Industry
 - Sensor/RFID code, product code, bar code, and blockchain, etc.
 - Trade, copyright, and ownership (Shipping code, product code, watermark, etc.)
- Data Intensive or Contexts related Industry
 - Big data analytics, Healthcare and medical applications

Requirements for Future Data Format

- (Basic) Recognize by human organ and their supporting utilities
 - Simple audio/sound, and visual image
 - Language including translation tools
- (Extended) Accumulation, Filtering, and Processing
 - Linked chains among related data or sensing data from IoT equipment
 - Accumulation by collective intelligence and crowdsourcing
 - Filtering based on experience, preference, and accumulated know-hows
 - Creation of new information and knowledge (like big data processing)
- (Applications) IoT Media, Energy Avatar, Traffic Guider
 - Context-aware information based on IoT sensors and AV devices
 - Navigation assistant (or Guider) for road and traffic conditions
 - Energy Avatar for analysis and prediction of energy consumption

Technical Issues for Data Platform

- **Usage Behavior Analysis**
 - Behaviors for Human Relationship (chat, discuss, share, etc.) ____
 - Behaviors for Entertainments (Game, TV, Drama, Film) ____
 - Behaviors for Works (collect, search, analyze, decide, etc.)
 - Behaviors for Life (Shopping, Education, Dining, etc.) _____
- Interaction Process between Human and ICT Environments

Open Data Platform - 1

- (Metadata) Data could not stand alone without metadata or descriptors
 - Re-define Data and Metadata → Metadata is not only descriptive information of data
 - used for handling, sharing, and processing data
 - New data format including metadata is needed
 - Active Hyperlink or JavaScript at web → like computer virus

• Recursive data format according to levels of perception and intelligence

Open Data Platform - 2

- (Platform) new model for data processing including database
 - "Data + Processing + Storage" in harmony → web-based common platform?
 - − New version of web platform → HTML5-based IoT/WoT world?
 - How to contain location, status, behaviors information that is not descriptive from existing web standards (such as text script/binary-based web)
 - Recursive data format to support complex and iterative algorithm or logics
 - New Markup language to adopt new UI/UX tools (e.g., 2D/3D drawing, gesture, expression, etc.)
 - Data platform for IoT/WoT application !
 - Web platform to reflect physical world (e.g., new organic sensors, etc.)
 - Semantics for experience/knowledge accumulation from IoT devices
 - How to build Cyber Physical System for future flexibility?
 - 3D virtual space, location, and depth/granularity/tier/level/attribute, etc.

Open Data Platform - 3

- (Next Generation Web) good for future open data world ?
 - Common platform for data creation, delivery, share, and consumption
 - Keep Simple User Interface and allow billions of software/applications
 - Utilize existing wireline/wireless network, computing/software, and database
 - No download and no installation \rightarrow Just access and use it !
 - Support flexible data platform for energy, transport, medical/health, education, and safety, etc.
 - Don't steal data from owners and customers \rightarrow good data governance !
- (Cloud) sharing data by using cloud platform
 - Performance, security, availability, and manageability of cloud platform are suitable for future data eco-society
 - Open ecosystem for data sharing and good data governance

Technical Issues of New Data Format

- HTML5-based UI/UX to help human perception
 - Device API, RESTful interface, Javascript, etc.
- Data and Metadata Together
 - Media object and media resource model
 - Media Ontology, Media Annotation
 - File Format, Microformat, ATOM/RSS
 - Device Data Format for Mashup
- Data format for Web-based open Platform
 - Open, Auto-configurable, and future flexible
 - But, Securable and manageable is in question ?

Web-based IoT Data Format

XML/RDF Schema

- Well-known data format ?
 - JSON, Microformat (e.g., vCard, hCalendar), ATOM/RSS
- DTD syntax, schema, and semantics, etc.
 - Tag, Index, Summary, Thumbnail, Preview, etc.
- IoT Data Format for future life and business
 - Continue to URI/URL/URN-based ?
 - Microservice, microdata for semantics
 - Mashup format for heterogeneous data applications

IoT Data Standards for Smart City

IoT Data Standardizations for Smart City

- IoT data cloud system for Smart City
- Real-time data analytics for Smart City
- IoT metadata for Smart City
 - Syntax, semantics, context-aware for unstructured IoT data
- Data security and trust for Smart City
- Data applications for Smart City (including visualization)
- Interoperability and Deployment scenarios for IoTbased Smart City

Thank you!

Appendices

Meanings of Data, Information, and Knowledge - 1

- (Value) "Data is King" or "Data is new Oil"
 - New Value when data is processed and accumulated
 - Added new value when combined with other data and different environments
 - Different meaning and understanding when the environments is changed

- Various form of data when it is created, shared, processed, and utilized

- Depending on applications (energy, transport, health, education, safety, etc.)
- Supported by **metadata** and descriptor
- Depending on activated conditions and environments
 - Vitalized with the related information and filtering conditions
- May have self-proliferation phenomenon of biological cell at future
- But, Data is very "Dangerous" like Nuclear Power
 - Imagine radioactive contaminated water

Meanings of Data, Information, and Knowledge - 2

- (DIKW) Value chains among Data, Information, and Knowledge
 - Linked Structure among data, information, and knowledge
 - How to make a process of data to get useful information
 - No meaning like "01100101100110..."
 - Tier-x data extracted from intelligent filtering process
 - Based on previous or background information, and statistics, etc.
 - Decision making by aggregating the related data
 - Depending on know-how, experience, and contextawareness
- (Environments) What environment for data is valuable
 - At right time, right place, and right condition
 - Location-, time-, and context-awareness: 5W1H rule!

Data Sciences for Knowledge Society - 1

- (Human Perception) How to make a process from data acquisition to get knowledge?
 - What percentage of data is perceived by human?
 - Could not monitor all the CCTV cameras during 24 hours/day
 - What amounts of information are extracted from same image and sound?
 - Depending on his/her experience and intelligence level! (e.g., X-ray image, intonation of sound, smell, etc.)
 - If new tools create, share, and utilize open data from IoT devices
 - Identify location and time
 - Recognize screen image and situation!

Data Sciences for Knowledge Society - 2

- (Type/Format) Cyber physical space for Energy, Transport, Health, Environment, and Surveillance, etc.
 - Various Standards for 3D physical space!
 - 3D scalable geo-graphic, MPEG, OGC, Web3D, OpenGL, etc.
 - Resolution and Accuracy of cyber physical 3D information
 - Depending on applications, data volume, and processing time, etc.
 - Data Type and Format for IoT/WoT applications
 - Data format for energy, transportation, health, surveillance/monitoring, etc.
 - 3D game, 3D image for navigation, 3D simulation for war and building construction, etc. → data format may be different!

Data Sciences for Knowledge Society - 3

- (Accumulation) Learning/Experience for Cognition Process of Knowledge
 - How to accumulate human knowledge collectively!
 - Collectively intelligence by mechanisms of perception see, hear, touch, smell, taste, and attention
 - New platform for knowledge sharing and accumulation!
 - Sharing tacit knowledge and real/virtual experience!
 - Experiences of driving, cooking, and gaming by simulation at virtual space

Linked Chain of Data

- New values of Linked Open Data (LoD)
 - New Values when Data are linked
 - $H + H + O \rightarrow Water [H_2O]$
 - Dynamic Hyperlink among similar and/or heterogeneous data
 - Environments/Conditions such that Data is meaningful
 - vegetable + salt + pepper + pot [Environment] → Kimchi
 - "On the Origin of Species" \rightarrow survival plan of live data
 - CCTV camera + location + status → meaningful data/information

Data Model of Resource Description Framework (RDF)

- Entity-Attribute-Value model
 - Making statements about resources
 - (Examples) XML DTD (Document Type Definition), JSON, tag, name, address, etc.

Data Serialization Model

- File, memory buffer, packets of communication protocol, time-varying data (A/V), etc.
- Text-based/binary-based, structured/unstructured, hierarchical/nonhierarchical, scalar/vector/graph, class/object, etc.
 - (Examples) Binary/Integer/Real/Exponent/Character/String/Boolean/Time, Vector/Matrix/Array, 2D/3D Graphics, Recursive, Audio/Video Stream, etc.
- Markup/Metadata/Schema/Semantic Model
 - Specify the processing to be performed or the related actions (i.e., activate, trigger, invoke, etc.)
 - Create the values of the data
 - (Examples) metadata, semantic ontology for IoT/CPS, OWL, etc.

