

# **Digitalisation and clean energy transitions**

George Kamiya · Energy Policy Analyst

16 December 2021 • ITU Green Standards Week Day 3, Session 2

#### Greenhouse gas emissions come from many sectors and sources







**Ied** 

#### **Energy and carbon emissions from digital technologies**

Secondary effects on other sectors

#### Direct effects on other sectors

#### Digital

IEA 2021. All rights reserved.

**Ied** 



Sources: UN (2019), World Population Prospects 2019; World Bank (2020), Data Bank: GDP, PPP (Constant 2017 International \$); IEA (2020), Data and statistics; ITU (2020), Statistics; Cisco (2015), The History and Future of Internet Traffic; Cisco (2018), Cisco Visual Networking Index: Forecast and Trends, 2017–2022

## = Forbes

May 30, 1999

# Dig more coal -- the PCs are coming

Q

() This article is more than 10 years old.

"It's now reasonable to project that half of the electric grid will be powering the digital-Internet economy within the next decade."

Forbes (1999). https://www.forbes.com/forbes/1999/0531/6311070a.html#21a128aa2580

#### Global data centre energy use trends



Sources: Masanet et al. (2020). Recalibrating global data center energy-use estimates. IEA (2021). Data centres and data transmission networks; Cisco (2018). Global Cloud Index: Forecast and Methodology, 2016-2021; Cisco (2019). Visual Networking Index: Forecast and Trends, 2017-2022.

Note: Figures exclude cryptocurrency mining

Globally, data centres used an estimated 200-250 TWh in 2020, or around 1% of global electricity use

#### Newsroom

#### COVID-19 Network Traffic Surge Isn't Impacting Environment Confirm Telecom Operators

Friday 29 May, 2020

More Energy Efficient Networks and Renewable Energy Usage are Negating Negative Environmental Impacts

**London**: The energy consumption and carbon emissions of telecoms networks have remained mostly unchanged in recent weeks, despite significant increases in network traffic as a result of COVID-19 lockdown measures.

In most cases, network electricity usage has remained flat, even as voice and data traffic has spiked by 50% or more.

flat, even as voice and data traffic has spiked by 50% or more.

#### Telefónica's decarbonisation



GHG emissions (Scope 1 and 2) ktCO<sub>2</sub>
Energy consumption (GWh)
Traffic (PB)

#### Telefonica: traffic up 45% in 2020, but energy use down 1.4%

GSMA (2020). https://www.gsma.com/newsroom/press-release/covid-19-network-traffic-surge-isnt-impacting-environmentconfirm-telecom-operators/. Telefonica (2021). https://www.telefonica.com/documents/153952/13347920/2020-Telefonica-Consolidated-Management Report.odf/8e690923-f95f-4247-ed34-91c0ba0ff510

#### **Renewable energy procurement**



ICT sectors include Technology and Telecommunications sectors.

ICT companies have accounted for around half of global corporate renewables procurement in recent years

### **Environmental impacts throughout the hardware lifecycle**



There are environmental impacts beyond energy use and GHG emissions throughout the product lifecycle, including impacts on soil, air, water, biodiversity, and electronic waste.

led



News Opinion Sport Culture Lifestyle

**Environment** > Climate change Wildlife Energy Pollution

## Guardian Environment Network Environment 'Tsunami of data' could consume one fifth of global electricity by 2025

Billions of internet-connected devices could produce 3.5% of global emissions within 10 years and 14% by 2040, according to new research, reports Climate Home News

Mon 11 Dec 2017 13.27 GMT





 $\equiv$ 

## Data centres: comparing global energy use estimates



Sources: Koomey (2011), Growth in Data Center Electricity Use 2005 to 2010; Van Heddeghem et al. (2014), Trends in worldwide ICT electricity consumption from 2007 to 2012; Andrae & Edler (2015), Con Blobal Electricity Usage of Communication Technology: Trends to 2030; Andrae (2017), Total Power Consumption Forecast; The Shift Project (2018), Lean ICT: Towards Digital Sobriety; Andrae (2019), Projecting the chiaroscuro of the electricity use of communication and computing from 2018 to 2030; Andrae (2019), Comparison of Several Simplistic High-Level Approaches for Estimating the Global Energy and Electricity Use of ICT Networks and Data Centers; Andrae (2020), New perspectives on internet electricity use in 2030; Belkhir & Elmeligi (2018), Assessing ICT global emissions footprint: Trends to 2040 & recommendations; Bordage / GreenTri (2019), Environmental footprint of the digital world; Hintemann & Claus (2016), Green Cloud? The current and future development of energy consumption by data centers, networks and end-user devices; Hintemann / Borderstep (2020), Efficiency gains are not enough: Data center energy consumption continues to rise significantly; Malmodin & Lunden (2018), The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015; Malmodin (2020), Energy consumption and carbon emissions in the ICT sector (presentation to TechUK); IEA (2017), Digitalization & Energy; IEA (2018-20), Tracking Clean Energy Progress: Data centers and data transmission networks; Masanet et al. (2020), Recalibrating global data center energy-use estimates.

120



## **Blockchain and cryptocurrencies**



#### **Effects on other sectors**



Secondary effects on other sectors

#### **Direct effects on other sectors**

Digital

## Changes in energy use and emissions from teleworking



#### Influencing the net climate impacts of digitalisation



Adapted from Bergmark (2021), Assessing the net climate impact of digitalisation.

#### Policy choices will play a central role in shaping the net energy and emission impacts of digitalisation

**Ie**0

## Applying digital technologies in the energy sector

- Buildings: smart building controls & thermostats; connected appliances & lighting
- Industry: robotics; digital twins; 3D printing; machine learning
- **Transport:** shared mobility services; automated & connected vehicles; freight optimisation

## Policies are critical: example of connected and automated vehicles



Source: Wadud, MacKenzie and Leiby (2016), "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles"

# Road transport energy demand could halve or double from automation and connectivity depending on how technology, behavior, and policy evolve

led

## Applying digital technologies in the energy sector

- Buildings: smart building controls & thermostats; connected appliances & lighting
- Industry: robotics; digital twins; 3D printing; machine learning
- **Transport:** shared mobility services; automated & connected vehicles; freight optimisation
- Electricity: IoT and automation to improve efficiency and reduce maintenance costs; machine learning to improve solar and wind forecasts, and better match supply and demand from increasingly decentralised sources
- Oil & gas: machine learning to reduce costs of detecting methane leaks
- Energy access: mobile services and infrastructure to facilitate electricity access
- **Policy:** data collection; modelling; assessing policy options and effectiveness

#### Net impacts on energy use and emissions will be shaped by climate policy

- ICT energy consumption
- Potential rebound effects (e.g. autonomous vehicles, connected appliances, induced consumption)

- Cybersecurity and digital resilience
- Data privacy and ownership
- Jobs and skills

#### Keeping the door open to 1.5°C



\* Including pledges announced at COP26

Despite some positive signs, there remains a significant gap to the Net Zero by 2050 Scenario – both in ambition and implementation 190

## **Tracking Clean Energy Progress 2021**



## Set near-term milestones to get on track for long-term targets



120

## Clean energy technology progress hinges on innovation









Source: IEA (2020). Energy Technology Perspectives 2020.

In the Faster Innovation Case, almost half of the emissions reductions for reaching net-zero by 2050 rely on technologies that are not yet commercial today. The share is higher in heavy industry & long-distance transport.

- Understanding the effects of digitalisation on climate change requires a comprehensive, systems-level perspective.
- Given the growth in demand for digital technologies, policies and actions are needed to mitigate energy and emissions growth from the sector in three areas:
  - 1. energy efficiency, incl. RD&D into next-generation tech;
  - 2. zero-carbon electricity;
  - 3. decarbonising supply chains.
- The direct GHG "footprint" is relatively small compared to the direct and indirect effects of digitalisation on other sectors and activities ("handprint").
- Digital technologies can have both positive and negative effects on climate change. They are NOT a silver bullet to tackle climate change, but can be an important tool.
- Strong climate policies are critical to ensure that digital technologies are applied in areas that help reduce emissions.

- IEA analysis:
  - **Direct footprint of ICT:** Tracking Clean Energy Progress: Data centres & networks (2021); Bitcoin energy use (2019); Data centres: global and local impacts (2019); Carbon footprint of streaming video (2020).
  - Effects on energy systems and other sectors: Digitalization & Energy (2017); Energy and emissions savings from working from home (June 2020); 5 ways Big Tech could have big impacts on clean energy transitions (2021).
- Other key papers:
  - Comprehensive reviews of digitalisation and climate: Royal Society (<u>2020</u>), Digital technology and the planet: harnessing computing to achieve net zero. Freitag et al. (<u>2020</u>), The climate impact of ICT: A review of estimates, trends and regulations. Hook et al. (<u>2020</u>), A systematic review of the energy and climate impacts of teleworking. Rolnick et al. (<u>2019</u>), Tackling Climate Change with Machine Learning.
  - Frameworks and methodologies to consider direct and indirect effects: Horner et al. (2016), Known unknowns: indirect energy effects of ICT; Pohl et al. (2020), How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches; Coroamă et al. (2020) and Bergmark et al. (2020), A Methodology for Assessing the Environmental Effects Induced by ICT Services.



#### **Questions?**

george.kamiya@iea.org



in GeorgeKamiya