

UNITED NATIONS UNIVERSITY

UNU-VIE SCYCLE

Sustainable Cycles Programme

E-waste statistics

How to measure imports and exports of e-waste

April, 2018 – E-waste statistics workshop - Zanzibar

Outline

- Introduction
- Import/ export behavior
- Current state
- Existing data sources for import/ export of e-waste and used equipment
- Novel methods

Behavior related exports of e-waste

Behavior related imports of e-waste

Imports vs exports

Country A Country B Export of e-Export of e-Import of e-+ Export of UEEE = Import of UEEE ++waste or UEEE waste waste Import of UEEE ≠ Export of UEEE Import of e-Export of e-≠ waste waste

Current state

Transboundary movement of e-waste reporting under Basel Convention limitations:

Decel

- Incomplete reporting
- Ambiguous definitions
- Incorrect categorization
- Discrepancies in reporting
- Data inaccuracies
- Only legal shipments of hazardous e-waste are documented

codes	Classifies waste depending on their chemical properties (no distinction between hazardous and not hazardous)
	For example: A2010 -> glass from cathode ray tubes and other activated glass.
Illegal Shipments	Extrapolations from customs data on export violations
	Identifying the data gap from national material flow analysis
Classifica- tions	Imp/exp is captured in trade statistics: (HS codes) codes as classification unit.
	HS codes do not distinguish between new and used

electronics.

Existing data sources for import/ export of e-waste and used equipment

- Extrapolations from customs data on export violations
- By identifying the data gap from national material flow analysis

High level of uncertainty, due to:

- Absence of complete datasets on all e-waste flows
- Fluctuation caused by market and social conditions

Novel methods

- Business statistics
- EPR Registers
- Trade codes
- GPS trackers
- Consignment notes
- Promising approach: Person In the Port

Method A: Use business statistics

- Questionnaires can be sent to the entire population or to a representative a sample of the companies (using business registers)
 - Outcomes processed using standard statistical routines

The companies that register could be

- In the waste management sector
- Refurbishing industries
- Repair shops
- Charity shops
- Municipalities, or other type of traders.

Measures exports / imports of e-waste and used EEE

- Not many countries are likely to have such registers
- Difficulty to define enterprises engaging in these business activities
- Illegal trafficking is not considered

- Register enacted by an Environmental Producer Responsibility law
 - Mandates to track imports and exports of used-EEE and e-waste

Method C: Use of trade codes

- Uses International trade statistics of a country
- Discriminate used EEE and e-waste from new commodities using price information from the trade
 - Difficulty to directly estimate the quantity of transboundary shipment of e-waste
 - Quality of raw datasets

- Volumes of detected trade are significantly underestimates of the real totals
- Due to the level of aggregation, it reflects a mix of prices
- Deliberate wrong reported data of e-waste, such as illegal exports, are not covered
- Underestimation of the real quantities
- Misreported shipments are not taken into account

Method D: Use of GPS trackers

- The tracking of controlled WEEE ensures:
 - The safe transport of these appliances to approved locations
 - Minimizes the risk of unauthorized commercialization and exports of these products to other countries

Method D: Use of GPS trackers

- Extrapolation of the results is the most challenging part of the method
- Where to place the trackers
 - Representative sample
 - Broken or functioning equipment
 - Strategic place to be brought to various waste collection channels in the country
 - Charity shop
 - Metals scrap dealer

Measures legal and illegal flows

- Battery life constraints
- Sample size
- Tracking devices should be waterproof
- Not all countries have the same mobile network

Method E: Consignment notes for the import or export of e-waste

- National regulations might have also established a system of consignment notes that must be completed for all shipments of e-waste.
 - Information on the quantity of the e-waste shipped (by e-waste category and disposal or recovery operation)
 - Specifications criteria for import and export

Promising approach: Person In the Port

Physical inspections

In 2015/2016, around 71,000 t of UEEE were imported annually into Nigeria through the two main ports in Lagos.

Sustainable Cycles Programme

4

Thank you for your attention!