ITU-T activities on Human Exposure to Electromagnetic Fields (EMFs)

8th Green Standards Week 9-12 April 2018, Zanzibar, Tanzania

Dr. Fryderyk Lewicki Chairman of Working Party 1, ITU-T SG5 Orange Polska, Poland

Introduction - Electromagnetic spectrum

Safety concerning RF EMF depends on frequency and exposure level

The resonance phenomena of the exposure

Table 1. The quantum energy of the radiation

Type of radiation (frequency)	Energy E = hv
Radio Frequency (RF) radiation (up to 10 ¹² Hz)	10⁻³ ÷ 10⁻¹² eV
Infra-red radiation (temperature 20°C)	3 · 10⁻² eV
Visible light	1,6 ÷ 3,1 eV
Ultraviolet light	3,3 · 10² eV
Roentgen radiation	10⁴ eV
γ radiation	10 ⁶ eV
Energy of chemical bonds of the molecules	1 ÷ 15 eV

The resonance phenomena of the exposure

Frequency	Wavelength 0,4 λ
50 Hz	2 400 km
225 kHz	533 m
1 MHz	120 m
70 MHz	1,7 m
200 MHz	0,6 m
630 MHz	0,19 m
900 MHz	0,13 m
1800 MHz	0,067 m

- The maximum absorption of the human body (adult person) is for the radiation on the frequency: 35 MHz (grounded) to 70 MHz (ungrounded)
- For the lowest frequencies (for example 50 Hz or Long Waves) the human body is "transparent" for the electric field (very small absorption)

WHO recommends the use of the ICNIRP exposure limits

ITU-T Recommendation K.70 Appendix I, EMF-estimator

Exposure limits

Data concerning exposure limits in different countries can be found on the WHO website:

http://apps.who.int/gho/data/node.main.EMFLIMITSPUBLICRADIOFREQUENCY?lang=e

WHO recommends the use of the ICNIRP exposure limits

Review of the exposure limits

• The exposure limits for RF EMF – in the ICNIRP guidelines and in countries with much more restrictive limits

Frequency band	ICNIRP limit (UE etc.)	IEEE limit C.95.1-2005	Example of more restrictive limits				
Basic restrictions							
10MHz <f<3ghz< td=""><td>0.08 W/kg</td><td>0,08 W/kg</td><td>-</td></f<3ghz<>	0.08 W/kg	0,08 W/kg	-				
3GHz <f<10ghz< td=""><td>0,08 W/kg</td><td>10 W/m²</td><td>-</td></f<10ghz<>	0,08 W/kg	10 W/m ²	-				
10GHz <f<300ghz< td=""><td>10 W/m²</td><td>10 W/m²</td><td>-</td></f<300ghz<>	10 W/m ²	10 W/m ²	-				
Reference levels							
400MHz <f<2ghz< td=""><td>2W/m²-10W/m² (28 V/m-61V/m)</td><td>2W/m²-10W/m² (27.5 V/m-61V/m)</td><td>0,1 W/m² (7V/m)</td></f<2ghz<>	2W/m²-10W/m² (28 V/m-61V/m)	2W/m²-10W/m² (27.5 V/m-61V/m)	0,1 W/m² (7V/m)				
f>2GHz	10 W/m² (61 V/m)	10 W/m² (61 V/m)	0,1 W/m² (7V/m)				

Current exposure levels

- In the table below there are results of the measurements of the electric field strength in about 3000 measurement points made by the French Agency ANFR in 2014-2016 (Etude de l'exposition du public aux ondes radioélectriques, ANFR, October 2017)
- In more than 80% of the locations the exposure level was lower than 1 V/m
- In less than 1% of the locations the exposure level was higher than 6 V/m

Année	E (V/m)	≥1V/m	≥ 2 V/m	≥ 3 V/m	≥ 4 V/m	≥ 5 V/m	≥ 6 V/m
2014	Occurrence (%)	18,3 %	5,5 %	2,8 %	1,7 %	1%	0,6 %
2015	Occurrence (%)	18,4 %	5,2 %	2,1 %	1,2 %	0,7 %	0,4 %
2016	Occurrence (%)	18,4 %	5,3 %	2,3 %	1,5 %	1,1 %	0,7 %

ITU-T Recommendations on EMF

- Recommendation ITU-T K.52 (2000/2017) Guidance on complying with limits for human exposure to electromagnetic fields – includes "K.52calculator" software
- Recommendation ITU-T K.61 (2003/2017) Guidance on measurement and numerical prediction of electromagnetic fields for compliance with human exposure limits for telecommunication installations
- Recommendation ITU-T K.70 (2007/2017) Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations includes "EMF Estimator" software
- Recommendation ITU-T K.83 (2011/2014) Monitoring of electromagnetic field levels
- Recommendation ITU-T K.90 (2012/2017) Evaluation techniques and working procedures for compliance with exposure limits of network operator personnel to power-frequency electromagnetic fields- includes "EMFACDC" software

Introduction - 5G mobile systems

The 5G system will cover three main different applications with different properties

- Enhanced Mobile Broadband
- Massive Machine Type Communications
- Ultra-reliable and Law Latency Communications

Enhanced Mobile Broadband

Smart antennas

- Current mobile systems: 2G, 3G and 4G apply base stations that are covering the whole intended area
- Smart antennas, that are planned for use in 5G will have narrow antenna beam (or beams) directed directly to the user (or users)
- This will allow to substantially reduce the exposure in the environment

5G and small cells

- Small cells will be much widely used especially for the high speed transmission that requires a very broadband transmission
- The use of the higher frequencies will result in lower coverages small cells. Base stations will be located closer to the user, but the used power will be smaller too
- Current experience shows that the use of the small cells (indoor and outdoor) reduces overall exposure level

Sharing infrastructure

- It is predicted that operators applying 5G mobile systems will share physical infrastructure more frequently (shared sites)
- Below an example of exposure level around two co-located base stations is presented (colored lines) together with total exposure level (black line)
- The total exposure is lower than simple sum of that caused by each operator

Base Stations A+B

Internet of things (IoT), M2M

- It is expected that many devices will be connected to the internet using radiowaves. It will result in many possible improvements in our lives
- It means that the number of radiating sources will increase dramatically
- Almost all of them will be very low power and short range devices. They will communicate on the event-based, periodic and automatic communication modes
- It means that the exposure level from such devices will be very low

Conclusions

- ITU-T SG5 is very active in sharing knowledge and tools concerning assessment of human exposure to RF EMF
- Good communication with public is a very important task
- Efficient deployment of wireless infrastructure reduces the RF EMF exposure from networks and devices
- In the development of the 5G system the possibility of the reduction of the human exposure to RF EMF is one of the key issues to be taken into account

Thank you Questions ?

