



### ITU Green standards week Innovating today for a sustainable tomorrow\_

### Green Subsea Cable Systems

### Peter Phibbs, Mallin Consultants Ltd

Photos courtesy NEPTUNE Canada, from over 2000m wáter depth



- Peter was responsible for the Hibernia and Globenet telecom system and for the NEPTUNE Canada observatory implementations.
- Mallin Consultants provides engineering project management services to owners and prospective owners of cable systems. We specialise in unconventional uses of subsea telecom technology





# Scope of this presentation

- Feedback from face to face meetings with Suppliers, Owners and associated companies
- Proposed response to that feedback
- Next Steps





.mallin\_Consultants Ltd.

### Scope of presentations to Industry

- 1. Why sensors are required in the deep ocean
- 2. Current methodology
  - A. Buoys, gliders and drifters
  - B. Standalone sensors
- 3. Dedicated cabled observatories
  - A. Benefits of cabled sensors proven
  - **B.** Geographical restrictions
- 4. Sensor support built into systems the "Green Subsea Cable System"





### Sensor requirements as presented (1)

- Data Rate per sensor location
  - Temperature 0.06 kbps
  - Pressure 1 kbps
  - Accelerometer 15 kbps
  - Total including overhead ~ 20kbps
- Power
  - ~5W per sensor location total
- Time Stamping
  - 50µsec





## Sensor requirements as presented (2)

- Physical
  - Small
  - Qualified for shock
  - Able to pass through cable engines
- Maintenance
  - None
- Calibration
  - No intervention
- No foreseeable impact on telecom system through failure of sensor or related equipment





### Discussions with: System suppliers











### SUBCOM





### Discussions with: System owners















### **Discussions with: Others**













### OCEAN NETWORKS CANADA EXPLORATION • INNOVATION • ACTION FOR A CHANGING PLANET A University of Victoria Initiative



## **Generalised Feedback - suppliers**

- Overall
  - Appears viable
  - Need detailed requirements to evaluate solutions
- Specific
  - A lower data rate would be make more economic options feasible. Consider compression of data
  - Power demand appears viable
  - Time delivery at shore station may be required
  - Solutions likely to be different for each Supplier
  - Some solutions may not involve repeaters





# Generalised Feedback – owners (1)

- Positive about the value of the data sought
- Confusion over:
  - scope and intent of initiative
  - Function and purpose of instruments
  - System requirements for instrument support
- Concern over:
  - impact on core business
  - Commercial implications (how will owners be compensated)
  - Viability of the Initiative with respect to consortium cables





## Generalised Feedback – owners (2)

- Concern over:
  - impact on UNCLOS protection
  - Negative impact on permitting processes
  - Slow progress of the Initiative
- Positives:
  - Some Owners keen to support implementation of sensors if provided with detailed engineering interface requirements
  - Owners willing to listen





# Outcomes from Feedback (1)

- Engineering & science requirements (Suppliers)
  - Consider the implications and effects of:
    - data compression
    - time stamping at shore station
    - no calibration
  - Green System (not Green Repeater)
    - Some suppliers will modify repeaters
    - Some suppliers will offer solutions independent of the repeaters
- Engineering & science requirements (Owners)
  - Need detailed requirements:
    - to understand potential impact of instrument support
    - To form the basis of costing





# Outcomes from Feedback (2)

- Commercial (All)
  - Evaluate realistic costs for:
    - Development
    - First implementation
  - Propose cost reimbursement strategies
- Progress (Owners)
  - Set realistic goals and timelines
  - Establish overall Initiative timeline
- Communications (All)
  - Publish regular progress reports
  - Circulate to Industry beyond the JTF





### Summary

- Initiative is viable
- Reasoned costed solutions must be established
- Preparation of costed solutions is a multi-step process  $\bullet$ 
  - Suppliers must develop technology solutions as a basis for costing
  - Detailed engineering interface requirements must be developed as a basis for technology solutions
  - Independent preparation of engineering interface requirements must be funded
- Following preparation of costed solutions:
  - Viable funding sources for development and implementation must be identified
- Further communications and face to face discussions with Owners are to be encouraged

. mallin Consultants Ltd.

## Engineering interface requirements (EIRs)

- Steps:
  - Prepare draft based on existing science requirements
  - Review draft with each system supplier with respect to:
    - Technical feasibility
    - Ballpark cost
    - Compromises required for significant cost reduction
  - Bring system supplier's feedback back to science users
    - Discuss impact of proposed compromises
    - Evaluate value lost or added
  - Prepare revised draft and review again with Suppliers
  - Finalise
- Outcome
  - Basis for business plan and funding source review





# Funding for preparation of EIRs

- Independent of Suppliers
  - Funded by a neutral party
- Supplier funding
  - Equal contributions from each supplier
  - Funding suppliers would be primary sources of input to EIRs
  - By splitting the cost, each Supplier's contribution is very small



### es of input to ElRs oution is very small



# Conclusion

- Proceed with funding preparation of EIRs
- Prepare EIRs
- Following EIRs:
  - commence business plan
  - Commence seeking suitable funding sources for development and implementation
- Commence preparing scope for wet test(s)





# Thank you

