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Annotations in supervised learning

* Data annotation is an essential part of supervised learning in artificial
intelligence

* Requires reliable visual interpretation of the digitized microscope images

* Quality and quantity of annotated data is reflected in the performance of
the trained Al models (bad quality data — poor Al model performance)

e Cost of annotation: a lot of effort is needed to achieve required amount of
reliable data and to maintain the quality of the data



The nature of whole slide datasets

* Very large areas to be examined
» Digitized whole slide (50 mm x 25 mm) @ 40X Mag. => 20 gigapixels (200k x 100k)

* Very large number of findings for experts to be manually annotated in
reasonable time

» Inadequate annotations

* Individual cases maybe too difficult for an expert to make correct decisions
» False labels

 Juggling with several different types of decisions at the same time is
mentally tasking

> Source of human errors



Challenges and limitations

* Experts are prone to make simple errors (fatigue, carelessness, subjectivity)
 Limitation of personal competence causing biased decisions

e Overconfidence / Underconfidence

* The requirement of correctly labelled data for training is too vast

e Evaluating the quality of the annotations objectively can be very difficult



Objectives to overcome the challenges

» To minimize cognitive bias and subjectivity
» To achieve balanced training datasets
» To produce more trustworthy data in less time

» To reduce the gap between the requirements that practitioners often
have in mind when they build an Al model, and the requirements that
are actually enforced by the Al pipeline



How to reach the objectives

 Utilize Al assisted micro tasking
* Exploit Al driven selection of training data
* Using multiple annotators with diverse skillsets

* Use of evaluation tools for quality assurance and quality management
to improve annotations as well as to analyse and enhance annotators’
performance



Micro tasking

e Dissecting annotation processes into easily manageable small tasks

 data discovery, object tracing/alignment, image quality assessment, object
labelling, etc.

* Microtasks turns unstructured data efficiently into structured data

* Serializing the tasks by the task type to avoid multi decision situations



Structuring micro tasking

» Utilizing different levels of expertise and diverse skillsets for different
tasks for more accurate and reliable outcome

» Visualizing the digitized images in the best way for human
perception, the turnaround time can be significantly improved

» Experts’ valuable time should be focused on making considered
decisions rather than learning and using complex tools that are
inefficient



Multiple annotators

e Wisdom of the crowd*

* The collective opinion of a diverse independent group of individuals is
likely to make certain type of decisions and predictions better than
that of a single expert

* Averaging results removes the noise associated with each individual
judgment

*Surowiecki, James. The Wisdom of Crowds. Anchor Books, 2004.



Multiple annotators

* Highlights outliers and discrepancies
* Measure experts’ decisions among the peer group

* Failure in cases when the majority is wrong



Effective targeting of expertise
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Collaborative annotation process
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Collaborative annotation process

* Whole slide image data turned into Al assisted micro tasks across the
target application domain

* Collectively but independently built ground truth

* Constant process of adjustment and readjustment for training more
accurate Al models over time
»Intervene, review, correct, and verify the mislabelled data



Annotation platforms

* Several commercial annotation services and platforms available

O V7, Labelbox, Scale Al, SuperAnnotate, Playment, Supervise.ly, Hive Data,
Dataloop, etc

* Use cases: agriculture, autonomous driving, robotics, aerial imagery,
NLP, healthcare, sports, financial services, insurance, security, life
sciences, etc.



Key features

* Al assisted annotation and automation

* Ability to improve training data by labelling the same assets by
different people independently

* Ability to manually review annotations side-by-side with the help of
other experts



Key features

* Review annotation performance automatically using statistics,
analytics and score metrics

* The collaboration and management of multiple distributed labelling
workforces

* Multi-level quality management and quality assurance



Case Study: Autonomous Vehicle
Startup

Use case: Produce training data for object perception models.
Source data: Car footage.

Data labelling type: Bounding boxes, cuboids, categorizations,
semantic segmentations, polygons.

Volume: 1M bounding boxes, 600K cuboids, 1.6M+
categorizations.

Outcome: The company was able to optimize its autonomous
vehicles’ processing accuracy by significant margins. We surpassed
expectations and the client is now working exclusively with us.

Source: Hive Data (thehiveai.com)
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Case Study: Medical Research
Center

Use case: Improve client Al model’s ability to detect cells and
organelles, reduce manual labor, and help come to research
findings more efficiently.

Source data: Images of cells and organelles.
Data labelling type: Semantic segmentations.
Volume: 75K+ masks.

Outcome: The research center was able to use our data to test and
improve its Al model, which enabled the organization to prioritize

Its research efforts.

Source: Hive Data (thehiveai.com)
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Case Study: Energy Optimization
Company

Use case: Profile residential home footprints to inform clients
where heat is dispersed on their property and how they could
optimize energy consumption. Classify home features including
solar panels, pools, and trampolines.

Source data: Plane-sampled aerial imagery.
Data labelling type: Polygons.
Volume: 10K+ images, 400K+ geolocated polygons.

Outcome: We helped the client profile home energy use and guide
targeted outreach to its residential customers.

Source: Hive Data (thehiveai.com)
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summary

Al assisted microtasks can efficiently and reliably turn large
unstructured data into structured data with minimal human labour

 Collectively, systematically, and consistently annotated datasets leads
to more robust and objectively evaluated ground truth over time

* Collaborative annotation process reduces biases and allows decisions
of individual experts with different skillsets to be compared,
monitored, and evaluated



Thank you for your attention!
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