FGAI4H-O-049

Berlin, 31 May – 2 June 2022

Source:	LMU Munich		
Title:	Workshop: TG-POC & TG-Histo - AI in morpho-molecular diagnostics and beyond		
Purpose:	Discussion Information		
Contact:	Frederick Klauschen Dep. of Pathology, LMU Munich BIFOLD, Charité, Berlin Aignostics, Berlin	E-mail: Frederick.Klauschen@med.uni- muenchen.de	
Abstract:	This PPT contains a presentation from the TG-POC & TG-Histo workshop on "Validation of annotations for AI models within the scope of point-of-care diagnostics (POC)"		

AI in morpho-molecular diagnostics and beyond

Frederick Klauschen Dep. of Pathology, LMU Munich BIFOLD, Charité, Berlin Aignostics, Berlin

The problem: Today's pathology unfit for precision medicine

How pathologists work today

- Visual precision to characterize tissue quantitatively limited
- Human ability to integrate complex, multimodal data limited
- Therefore, only simple biomarkers for patient stratification possible today
- For example, only 12% of patients who receive immune checkpoint therapy will benefit ¹

1: Haslam A, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw Open. 2019;2(5):e192535. Published 2019 May 3. doi:10.1001/jamanetworkopen.2019.2535

Al-supported pathology diagnostics

Numerous publications on simpler issues:

Cancer detection, classification of common tumour types, growth pattern, prediction of MSI, e.g. 1. Kather JN et al. *Nat Med*. 2019;25:1054–1056. 2. Coudray N et al. *Nat Med*. 2018;24:1559–1567.

Limits of current AI approaches

Challenge #1: many rare diagnoses "long tail"

Challenge #2: Most AI are Black Boxes

Diagnostics:

Problem of diagnostic result verification by pathologist!

Research:

Potential biomarkers hidden in black box!

Classical Black Box Al

"Explainable" AI – Why does it matter?

Source: https://www.nature.com/articles/s41467-019-08987-4

<u>"Clever Hans" example</u>: Al classifies the input as a horse due to the source tag in the picture. This "source tag" could be an indicator of *insufficient training* or a *novel biomarker*.

US Patent 9558550B2 and US20180018553A1 | EU Patent EP2756456A1 and EP3271863A1

Opening the Black Box with Explainable AI

Red: cancer cells

Binder & Bockmayr, ... Müller & Klauschen, Nature Machine Intelligence, 2021

Challenge #3: "know your data" training data access for generalizable model generation (in a complex regulatory environment)

1 Data curation with multiple university hospital partners

2 Data processing on multiple platforms

3 Annotation by pathologist network

Multi-scale quantitative tissue analysis

AIGNOSTICS » NSCLC PoC » Final iteration » IE08961614_SP263_HE

Example: Improved performance of AI over conventional Dx

- In a <u>preclinical biomarker</u> <u>study</u>, AI "diagnosed" therapy efficacy after 24h based on mitotic count in H&E
- Conventional diagnostics was not able to detect changes accurately
- Mitotic count relevant for up to 80% of cancer cases
- <u>Next</u>: Application in clinical trials, potentially CDx

Machine-Learning-based Prediction of Immunotherapy-Response from Histology and Clinical Data in NSCLC

in cooperation with Image: Bristol Myers Squibb[™]

Data from clinical trials Checkmate 017, 026, 057 N ~ 1200 patients

Data preprocessing:

Assume relevant information lies in tumor histomorphology. Extract tiles containing tumor.

Resulted in a dataset with 400k tiles.

Machine Learning: Deep MIL neural network.

Extract feature encodings for tiles with CNN. Aggregation networks in MIL framework.

CHARITÉ Bristol Myers Squibb

Comparison of "Clinical" and "Clinical+Al" outcome prediction

AI-based histology analysis complements conventional diagnostic and clinical parameters and yields better outcome predictions

in cooperation with the Bristol Myers Squibb

Al-supported molecular diagnostics

Primary lung cancer or metastasis from head&neck cancer?

Jurmeister P. and Bockmayr M., ... Capper D. and Klauschen F., Science Transl. Med., 2019.

Al analysis of DNA methylation profiling

Primärtumor Trainingskohorte (n = 1087)

Standard RF classifier vs. Deep Learning

0.95

Threshold

Sample Information

Supplier Information		Quality Control		
Journal Number:	E4827-20	DNA Input [ng]:	500	\checkmark
Sentrix ID:	203810640095_R04C01	Mean Detection p-Value:	0.0002	\checkmark
Gender:	Male	Predicted Gender:	Male	\checkmark

Classifier Results

LUSC		0.9995
HNSC	•	4e-04
LUNGNORM	•	1e-04

DeepCIPHOR classifier scores for head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC) and normal lung tissue (LUNGNORM). The grey vertical line indicates the cut-off of 0.95, which resulted in an accuracy of 99.2% in the validation cohort (Jurmeister P & Bockmayr M et al., Sci Transl Med 2019).

Combined AI – DNA-Methylation approach improved diagnostic accuracy from "chance" to "diagnostic grade".

Prediction of network topology from omics data with ExAl

Precondition: large numbers of samples for training!

Interpretation with Layer-wise-relevance-propagation (LRP) Bach,...,Klauschen, Müller, Samek, PLoS1, 2015

Modeling of Signaling Networks Angermann*& Klauschen* et al., *Nature Methods*, 2012

ExAl-based analysis for individual patients

Keyl et al., Nature pj Precision Oncology, in print.

Similar network structures across tumor types vs. variable networks within a histotype

Keyl et al., Nature pj Precision Oncology, in print.

Today Improve Analysis

- Disease detection
- Feature quantification

Next Improve Diagnosis

- (Differential) Diagnosis
- Outcome prediction
- Treatment suggestion

Future Multi-modal data integration & clinical decision making

- AI-based precision medicine: integration of histological, molecular and clinical information
- AI diagnoses "easy" cases independently

AI will fundamentally change precision medicine through multi-modal prediction models

- Humans cannot process all data available per patient
- Pathology labs key to most data modalities and hence our starting point
- Successful projects are translated into Aignostics

