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The problem: Today’s pathology unfit for precision medicine

How pathologists work today
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*= Forexample, only 12% of patients
who receive immune checkpoint
therapy will benefit !
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1: Haslam A, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw Open. 2019;2(5):e192535.
Published 2019 May 3. doi:10.1001/jamanetworkopen.2019.2535



Al-supported pathology diagnostics

Example: Lung cancer

Yellow, red: carcinoma
Blue, green: normal tissue

Numerous publications on simpler issues:
Cancer detection, classification of common tumour types, growth pattern, prediction of MSI, e.g.
1. Kather JN et al. Nat Med. 2019;25:1054-1056. 2. Coudray N et al. Nat Med. 2018;24:1559-1567.
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Limits of current Al approaches

Acquired ability for

elephant recognition is based on
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Challenge #1: many rare diagnoses "long tail"
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Challenge #2: Most Al are Black Boxes

Cancer? Black Box

Diagnostics
}f Problem of diagnostic result verification by pathologist!

r &
% _ .\ Research:
Potential biomarkers hidden in black box!




Classical Black Box Al

Black Box Cancer!
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‘“Explainable” Al - Why does it matter?

Input Data Al Model Classification Explanation
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Black Box

|
Approach Yes, a horse! n/a
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Source: https://www.nature.com/articles/s41467-019-08987-4

“Clever Hans” example: Al classifies the input as a horse due to the source tagin the picture.

This “source tag” could be an indicator of insufficient training or a novel biomarker.



https://www.nature.com/articles/s41467-019-08987-4

Opening the Black Box with Explainable Al
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Binder & Bockmayr, ... Muller & Klauschen, Nature Machine Intelligence, 2021



Challenge #3: ,know your data“

training data access for generalizable model generation (in a complex
regulatory environment)

Data curation with multiple = < AIGNOSTICS
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Multi-scale quantitative tissue analysis
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Example: Improved performance of Al over conventional Dx

Pathologists + IHC
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In a preclinical biomarker
study, Al “diagnosed” therapy
efficacy after 24h based on
mitotic count in H&E

Conventional diagnostics was
not able to detect changes
accurately

Mitotic count relevant for up
to 80% of cancer cases

Next: Application in clinical
trials, potentially CDx

13



Machine-Learning-based Prediction of

Immunotherapy-Response from Histology and Clinical Data
in NSCLC

in cooperation with

Ul Bristol Myers Squibb

Data from clinical trials Checkmate 017, 026, 05/
N ~ 1200 patients



Data preprocessing:

Assume relevant information lies in
tumor histomorphology.

Extract tiles containing tumor.

Resulted in a dataset with 400k tiles.

Machine Learning:
Deep MIL neural network.

Extract feature encodings for tiles with CNN.

Aggregation networks in MIL framework.

CHARITE (IhBristol Myers Squibb’

UNIVERSITATSMEDIZIN BERLIN
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Comparison of “Clinical” and “Clinical+Al” outcome prediction

AUC in percent. 5-fald cross-validated 08;1200nrlnvs. PFS><7?5H[]“VS. ESBPI;‘E(‘:ISR
Treatment + PD-L1 61.0 505 61.0

100% of cases

Treatment + PD-L1

20% of cases with highest confidence
predictions

H&E Image
100% of cases

H&E Image + Treatment + PD*
100% of cases

H&E Image + Treatment + PD-L1

20% of cases with highest confidence
predictions

Al-based histology analysis complements conventional diagnostic
and clinical parameters and yields better outcome predictions

Improvement by Al:

in cooperation with k'"' Bristol Myers Squibb’

+4 to 17 percentage pts.
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Al-supported molecular diagnostics ! - ‘l.

Primary lung cancer or metastasis from head&neck cancer?
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296 (84.1%)

retrospective analysis Charité

Jurmeister P. and Bockmayr M., ... Capper D. and Klauschen F., Science Transl. Med., 2019.



Al analysis of DNA methylation profiling

Primartumor Trainingskohorte (n = 1087)
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528 HNSC samples
370 LUSC samples

189 normal lung samples

Validierungskohorte (n = 279)
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Standard RF classifier vs. Deep Learning

Sample Information

Supplier Information

Neural network

Quality Control
Journal Number: E4827-20 DNA Input [ng]: 500

Sentrix ID: 203810640095_R04C01 Mean Detection p-Value: 0.0002
R a W a CC u ra C 9 6 4 (y Gender: Male Predicted Gender: Male
\ A /0

Classifier Results

LUSC

Threshold accuracy

I 0.9995
HNSC @ 4e-04
LUNGNORM 1le-04

P re d I Cta b I e Ca S e S DeepCIPHOR classifier scores for head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC) and normal lung

b tissue (LUNGNORM). The grey vertical line indicates the cut-off of 0.95, which resulted in an accuracy of 99.2% in the validation cohort
(Jurmeister P & Bockmayr M et al., Sci Transl Med 2019).
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s approach improved diagnostic accuracy
5 from “chance” to “diagnostic grade”.
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Prediction of network topology from omics data with ExAl

Precondition: large numbers of samples for training!
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Interpretation

Interpretation with Layer-wise-relevance-propagation (LRP)
Bach,...,Klauschen, Muller, Samek, PLoS1, 2015

Modeling of Signaling Networks
Angermann*& Klauschen* et al., Nature Methods, 2012



ExAl-based analysis for individual patients

Cancer

ACC
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Many patients needed for training!
Yp 5 Keyl et al., Nature pj Precision Oncology, in print.



Similar network structures across tumor types
vs. variable networks within a histotype

Keyl et al., Nature pj Precision Oncology, in print.



Pathology Al

Future
Multi-modal data integration
& clinical decision making

Next
Improve Diagnosis

Kaplan-Meie]

1.0

=  Al-based precision
medicine: integration of
histological, molecular
and clinical information

= (Differential) Diagnosis gl diagnoses feasy” cases

independentl
=  Outcome prediction 2 4
= Treatment suggestion

Today
Improve Analysis

= Disease detection
=  Feature quantification



Al will fundamentally change precision medicine
through multi-modal prediction models

Prediction
= Humans cannot process
Tile Vectors Case Vector Prediction a“ data availa ble per
Histology —  f ._ patient
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