FGAI4H-O-046

Berlin, 31 May – 2 June 2022

Source: H3ABioNet (South Africa)

Title: Workshop: WG-CO - Development of genomics data infrastructure and

standards within Africa

Purpose: Discussion

Contact: Sumir Panji E-mail: sumir.panji@uct.ac.za

H3ABioNet South Africa

Abstract: This PPT contains a presentation from the WG-CO workshop on "Equitable

data infrastructures to support equitable and effective pandemic

intelligence".

DEVELOPMENT OF GENOMICS DATA INFRASTRUCTURE AND STANDARDS WITHIN AFRICA

Sumir Panji

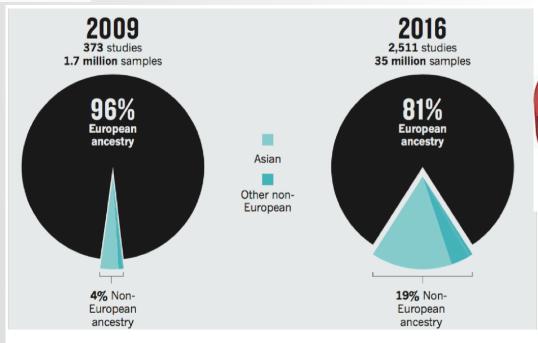
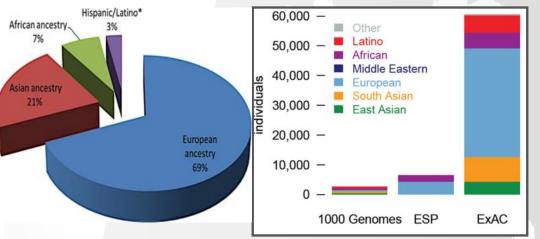
ITU-WHO Focus Group on Artificial Intelligence for Health 30th May 2022

www.h3abionet.org #h3abionet

Presentation Overview

- Introduction
- H3Africa and H3ABioNet
- Overview of H3ABioNet
- Development of data standards
- Development of an H3Africa data archive and data catalogue
- Computational tool development
- Findable, Accessible, Interoperable and Resusable (FAIR) and H3Africa Data and meta-data
- Examples of SARS works and early release of data
- Data Science Initiative Africa (DS-A Africa)
- eLwazi Open Data Science Platform
- Conlcusions

The Genomics Revolution and Africa

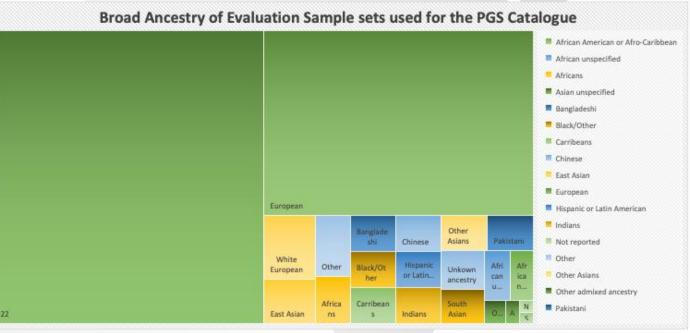
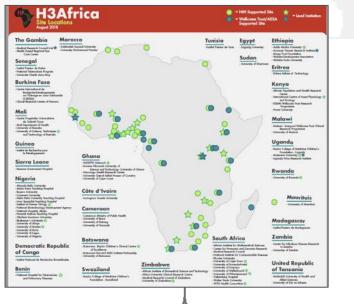


Image credits and reference: Popejoy AB, Fullerton SM. Nature. 2016

Oct 13;538(7624):161-164 https://doi.org/10.1038/538161a

Slide credits - Prof. Michèle Ramsay, SBIMB, Wits and Prof. Nicky Mulder UCT CBIO


Data summary from the PGS Catalogue accessed in August 2020: https://www.pgscatalog.org/

The H3Africa Consortium

The Human Heredity and Health in Africa (H3Africa) Initiative aims to facilitate a contemporary research approach to the study of genomics and environmental determinants of common diseases with the goal of improving the health of African populations."

(http://h3africa.org/)

7 Ethical, Legal and Social Issues (ELSI) **Projects**

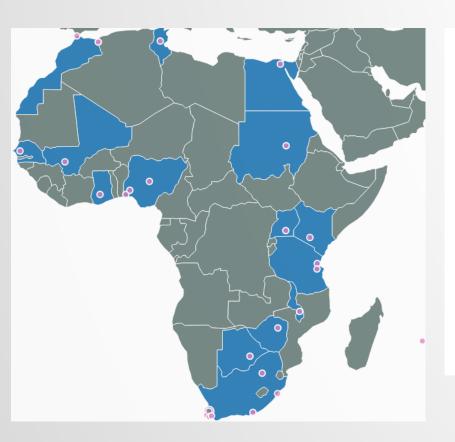
15 Collaborative Centers

3 Biorepository **Projects**

16 Research **Projects**

4 Global Health **Bioinformatics** Degree **Programs**

- 48 H3Africa projects funded
- 30 African countries involved in phase 2
- 500+ consortium members
- >160+ publications so far http://h3africa.org/consortium/projects
- 170 million USD invested



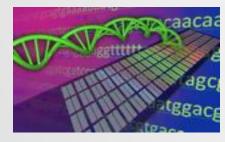
Pan African Bioinformatics Network for H3Africa

(H3ABioNet)

 Pan African Bioinformatics Network to develop bioinformatics capacity in Africa and support the H3Africa research projects

28 Institutions
16 African Countries

Overview of H3Africa Data



Genetic Variation data human and pathogen

- Genomic Sequence data
- Whole genome exome and targeted sequencing

- ~55,000 samples to be run on an H3Africa African custom chip
- Raw intensity files linked

Microbiome sequence data


- Patient/sample phenotypes
- Non-human 16S rRNA sequence data for microbiome
- Non-human full genome sequence data for microbiome
- Possible human sequence contamination

H3Africa Data Archive overview

Passes validation, prepare EGA XML files, re-encrypt and move to cold storage

14 African
 Genomic
 Datasets in
 the archive

134.9
 Terabytes of African
 Genomics data

 8 Datasets QC-ed, validated and submitted to EGA

77.3
 Terabytes
 transferred
 for storage
 at the EGA

Move data to vault, decrypt

and validate

Specific Data submission files and checks

- FastQ files linked with de-identified participant ID (minus adapters, linkers, barcodes)
- ✓ Binary Alignment files (BAMs, de-multiplexed) linked with participant de-identified ID
- ✓ Variant calling files (VCFs)
- ✓ Phenotypic data
- ✓ Study type e.g. case / control, trio, longitudinal
- ✓ Sequencing platform / technology
- ✓ Mapping file indicating relationship between files

- √ Chip platform and model / name
- Raw intensity files linked with de-identified participant IDs (IDATs, CELs)
- ✓ Manifest file describing SNP or probe content on chip
- ✓ Software used for calling the genotypes
- √ Final reports and analyses files generated
- ✓ Phenotypic data
- ✓ Study type e.g. case / control, trio, longitudinal
- ✓ Mapping file indicating relationship between files

- ✓ FastQ files linked with de-identified participant ID (minus adapters, linkers, barcodes)
- √ Sequencing platform
- ✓ Final analyses BIOM files (at minimum contain OTUs)
- ✓ Phenotypic data
- ✓ Study type e.g. case / control, longitudinal
- ✓ Mapping file indicating relationship between files

Move data to the vault, decrypt and validate:

- ? Do the checksums match
- ? Are there mapping files present
- ? Do the number of samples match what is expected
- ? Are all the files present for each deidentified participant ID
- ? Is there a mismatch between participant IDs and files
- ? Do all the files have phenotypic data present
- ? Is there a dataset summary description and study abstract present

Passes validation:

- Map data to EGA XML schemas
- Re-encrypt the data and move to cold storage
- Submit data to EGA at pre-determined date

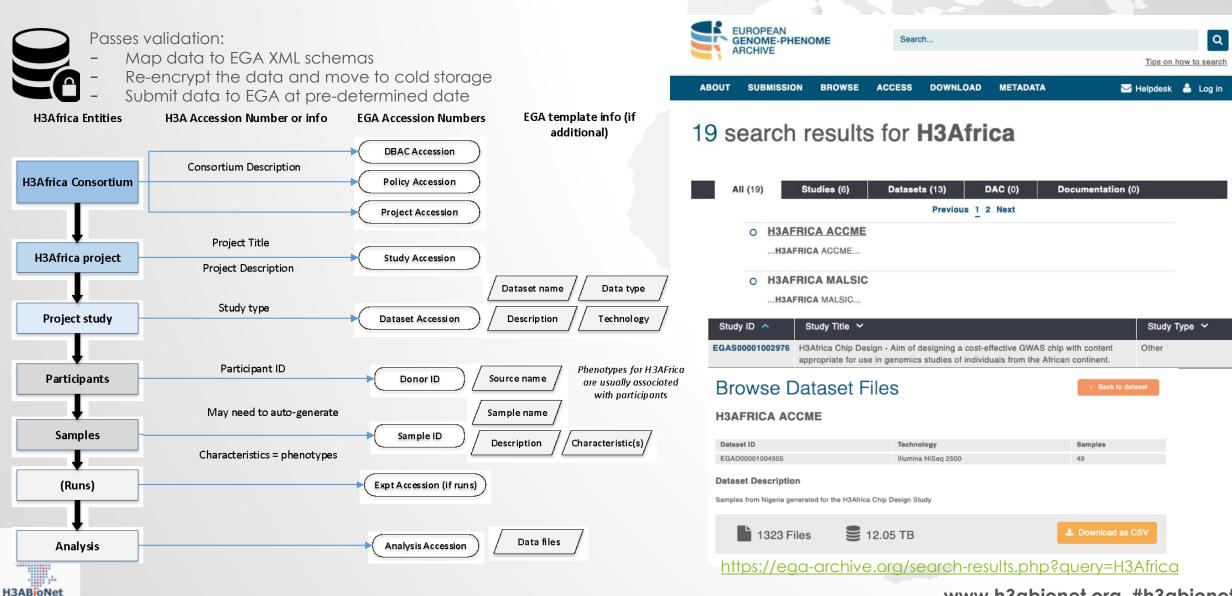


Image credits: National Human Genome Research Institute (https://www.genome.gov/imagegallery/)

Mapping and submission of H3Africa data

www.h3abionet.org #h3abionet

Phenotype harmonization

Meta-data (phenotype) data is collected via case report forms (CRFs)

- (1) Age & (2) Sex
- (3) Country of birth
- (4) Current residence
- (5) Native language
- (6) Ethno-linguistic/tribal affiliation
- (7) Country of birth of father and mother
- (8) Native language of father and mother (9) Ethno-linguistic/tribal affiliation of
- mother and father
- (10) Height
- (11) Weight
- (12) Current medications
- (13) Smoking history
- (14) Alcohol history

Same question – Same variable data coded in – collected in different ways different ways

Female

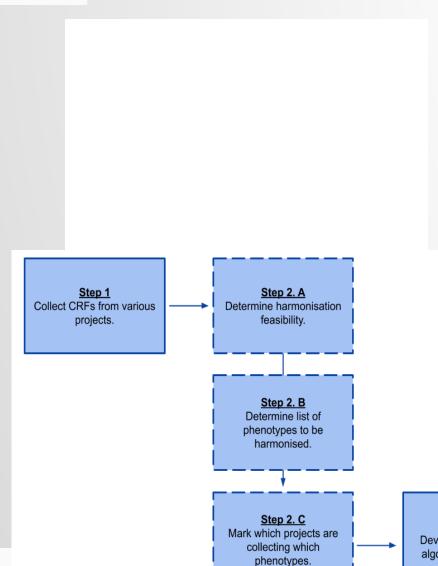
Daily units

Project 2 CRF

Woman

Weekly units

Project 3 CRF


User defined time period

Phenotype harmonization

	ACCME		AWI-Gen		DM Group		Kidney grou	ip.	RHDGen		SIREN	
	n=11 700	% Complete	n = 11057	% Complete	n = 3657	% Complete	n = 7964	% Complete	n = 3555	% Complete	n = 3811	% Complete
Age distribution	>18 years	100.0	40-60 years	100.0	≥25/ ≥18 years	100.0	0-74 years	100.0	Paediatrics and adult	100.0	>18-100 years	100.0
Sex	Female only	100.0	M/F	100.0	M/F	100.0	M/F	100.0	M/F	100.0	M/F	100.0
Anthropometrics:												
Weight (kg)	X	99.9	X	100.0	X	100.0	X	100.0	X	98.5	X	87.9
Height (m)	X	99.8	X	100.0	X	100.0	X	99.9	X	95.4	X	91.0
Waist circumference (cm)	X	99.8	X	100.0	X	100.0	X	99.7			X	94.6
Hip circumference (cm)	X	99.9	X	100.0	X	100.0					X	95.5
General health:												
Smoking/tobacco	X	99.8	X	100.0	X	100.0	X	100.0			X	98.3
Alcohol	X	99.8	X	99.9	X	100.0	X	99.9			X	98.9
Cancer history	X	99.8	X	99.9	X	100.0	X	99.8			X	98.5
Diet	X	99.7	X	99.8	X	100.0					X	95.4
Exercise	X	99.8	X	100.0	X	100.0					X	98.3
Cardiovascular health:												
Blood pressure	X	99.9	X	100.0	X	100.0	X	100.0	X	86.8	X	96.6
Atrial fibrillation (ECG)							X	100.0	X	12,1	X	98.3
Stroke and stroke-free status	X	99.8	X	99.9	X	100.0	X	100.0			X	100.0
Myocardial infarction	X	99.8		77.0	X	100.0					X	98.6
Blood collection for biomarkers												
Lipid profile			X	100.0	X	100.0					X	99.0
Fasting plasma Glucose			X	100.0	X	100.0					X	60.6
HbA1c			X		X	100.0					X	41.7
Insulin			X	100.0	X	100.0						
Infection history												
TB infection			X	99.9	X	100.0	X	99.9			X	98.6
HIV status	X	100.0	X	99.9	X	100.0	X	99.9			X	98.6
Malaria			X	99.9	X	100.0	X	100.0			X	98.4
Urine collection			X		X	100.0						
Albumin (microalbumin)			x	99.8	x	100.0	X	100.0				
Total protein			X	99.9			X	99.9				
Creatinine			X	99.9	X	100.0	X	100.0			X	80.0
Samples to be stored												
DNA	X	99.9	X	99.9	x	100.0			X	99.0	x	99.9
Buffy coat	X	99.9	X	99.9					X	70.0	X	99.9
Plasma	X	99.9	X	99.9	X	100.0			X	82.0	X	99.9
Serum	x	99.9	x	99.9	X	100.0			X	79.9	X	99.9
Urine	x	99.7	X	99.8	x	100.0					x	

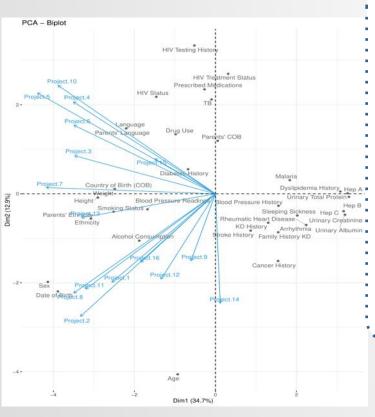

Step 3
Develop harmonisation algorithms per project.

Table reference: Owolabi MO, Akpa OM, Made F, Adebamowo SN, Ojo A, Adu D, Motala AA, Mayosi BM, Ovbiagele B, Adebamowo C, Tayo B, Rotimi C, Akinyemi R, Gebregziabher M, Sarfo F, Wahab KW, Parekh RS, Engel ME, Chisala C, Peprah E, Mensah G, Wiley K, Troyer J, Ramsay M; as members of the CVD Working Group of the H3Africa Consortium. Data Resource Profile: Cardiovascular H3Africa Innovation Resource (CHAIR). Int J Epidemiol. 2019 Apr 1;48(2):366-367g. doi: 10.1093/ije/dyy261. PMID: 30535409; PMCID: PMC6469307.

Phenotype harmonization

Data sources

EGA

Biobanks

CHILD

H3ABioNet

Cohort/Resource name	Number of participants	Location	Longitudinal	Diseases	Gender	WGS	WES	RNA-Seq	Epigenetics	Genotyping
CHILD	3.5K	CA	Х	Population based developmental health and disease	M & F	X		Х	Х	Х
CARTaGENE	43K	CA	X	Population based cohort	M&F	X		X		X
PROFYLE	450	CA		Pediatric Oncology	M&F	X		Х		
CLSA	50K	CA	X	Population based cohort	M&F					X
H3Africa	75K	SA		Multiple communicable and non-communicable diseases in multiple African countries	M&F	Х	Х			Х
BIOS	4K	NL		Population based cohort	M & F	X		X	X	X
Estonian Biobank	51K	EE	X	Population based cohort	M&F	X	X	X	X	X
CoLaus	6.1K	СН	X	Cardiovascular diseases	M&F			X		X
PsyCoLaus	3.6K	СН	X	Mental disorders	M&F			X		X
EGA	700K	UK+ES		Multiple disease and healthy cohorts	M&F	X	X	X	X	X
UK Biobank	500K	UK	х	Population cohort and disease: cancer, heart diseases, stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia	M & F	Х	Х			Х

Experimental Factor Ontology

Human Genomic Data Privacy

H3Africa rich source of meta-data (phenotypes)

- (1) Age & (2) Sex
- (3) Country of birth
- (4) Current residence
- (5) Native language
- (6) Ethno-linguistic/tribal affiliation
- (7) Country of birth of father and mother
- (8) Native language of father and
- (9) EMPh guistic/tribal affiliation of mother and father
- (10) Height
- (11) Weight
- (12) Current medications
- (13) Smoking history
- (14) Alcohol history

 Combination of phenotype and genetic data makes it possible to identify different populations and individuals – controlled access

H3Africa data sharing and access policy

Balance between ensuring adequate safeguards to protect participants, while not being a barrier for scientists to advance research:

- Maximizing the availability of research data, in a timely and responsible manner.
- Protecting the rights and privacy of human subjects who participated in research studies.
- Recognizing the scientific contribution of researchers who generated the data.
- Considering the nature and ethics of the research proposed in establishing the timely release of data, and mechanisms of data sharing.
- Promoting deposition of genomic data in existing community data repositories whenever possible

http://h3africa.org/images/DataSARWG_folders/FinalDocsDSAR/H3Africa%20Consortium%20Data%20Access%20%20Release%20Policy%20Aug%202014.pdf

H3Africa Biospecimen and Data Catalogue

H3Africa Biospecimen and Data Catalogue

See further information on Data Use Conditions

Label V	Code ~	Version ~	Modifier ~
research use only	DUO:0000014	2019-01-07	
general research use	DUO:0000042	2019-01-07	
project specific restriction	DUO:0000027	2019-01-07	
publication moratorium	DUO:0000024	2019-01-07	
publication required	DUO:0000019	2019-01-07	

Data Use Ontology

Ontology

Image credits: GA4GH DUO Stream: https://github.com/EBISPOT/DUO

For Profit Purpose

Allowed Recontact Terms

 IP Claim Terms Reporting Terms

· Payment Terms otherTOS[xx]

· Compulsory Recontact Terms

FAIR?

Origins and definitions of FAIR

It has long been recognised that it is not sufficient simply to post data and other research-related materials onto the web and hope that the motivation and skill of the potential user would be sufficient to enable reuse. There is a need for various things, including contextual and supporting information (metadata) to allow those data to be discovered, understood and used. This notion has led a number of policy documents to list the key attributes that allow data to be reused and to demonstrate value. Arguably the most influential document is the OECD's 'Principles and Guidelines for Access to Research Data from Public Funding,' as it demonstrably led to and influenced a series of funder data policies. Although influential, it is clear from subsequent policies and reports that the OECD attributes needed to be further defined to make them more 'data centric', so that researchers, research institutions and data repositories would have a clearer understanding of the principles underlying useful data sharing.

Primary Recommendations and Actions

Step 1: Define and apply FAIR appropriately

Rec. 1: Definitions of FAIR

FAIR is not limited to its four constituent elements: it must also comprise appropriate openness, the assessability of data, long-term stewardship, and other relevant features. To make FAIR data a reality, it is necessary to incorporate these concepts into the definition of FAIR.

https://ec.europa.eu/info/sites/info/files/turning fair into reality 1.pdf

Why is FAIR important?

Following this approach, we found that the annual cost of not having FAIR research data costs the European economy at least €10.2bn every year. In addition, we also listed a number of consequences from not having FAIR which could not be reliably estimated, such as an impact on research quality, economic turnover, or machine readability of research data. By drawing a rough parallel with the European open data economy, we concluded that these unquantified elements could account for another €16bn annually on top of what we estimated. These results relied on a combination of desk research, interviews with the subject matter experts and our most conservative assumptions.

https://op.europa.eu/s/sniv

Who does FAIR apply to?

Stakeholder groups assigned Actions

https://ec.europa.eu/info/sites/info/files/turning fair into reality 1.pdf

- Research communities: practitioners from all fields of humanities and science, clustered in groups around disciplinary interests, data types or cross-cutting grand challenges.
- Data services: domain repositories, Research Infrastructures (ESFRIs) and E-Infrastructures, institutional provision, community and commercial tools and services.
- Data stewards: support staff from research communities and research libraries, and those managing data repositories.
- Standards bodies: formal organisations and consortia coordinating data standards and governing procedures relevant to FAIR, e.g. repository certification, curriculum accreditation.
- Global coordination fora: the Research Data Alliance, CODATA, WDS Communities of Excellence, FORCE11, GO FAIR and other similar initiatives.
- Policymakers: governments, international entities like OECD, research funders, institutions, publishers and others defining data policy.
- Research funders: the European Commission, national research funders, charitable organisations and foundations, and other funders of research activity.
- 8. Institutions: universities and research performing organisations
- Publishers: commercial and not-for-profit, paywall and Open Access publishers of research papers and data.

The NIH Big Data to Knowledge (BD2K, https://datascience.nih.gov) program is a trans-NIH data science program that is addressing data sharing by working to make biomedical data Findable, Accessible, Interoperable, and Reusable (FAIR; see https://www.force11.org/group/joint-declaration-data-citation-principles-final). Data and analytical resources generated by H3Africa are expected to conform to the FAIR principles.

https://grants.nih.gov/grants/guide/rfa-files/RFA-rm-16-011.html

FAIR - H3Africa Data

 RDA FAIR Data Maturity Model (https://www.rd- alliance.org/system/files/FAIR%20Data%20Maturity%20Model_%20specification%20and%20g uidelines v1.00.pdf)

- AKA FAIR Indicators
- Indicators of 3 levels
 - Essential
 - Important
 - Useful
- 40 Indicators
 - 7 Findability Indicators
 - 12 Accessibility Indicators
 - 12 Interoperability Indicators
 - 9 Reusability Indicators

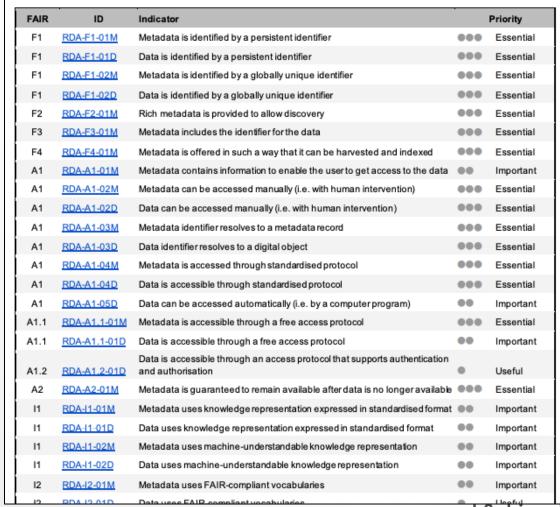


Table 1 FAIR data maturity model indicators

FAIR - H3Africa Data

RDA FAIR indicators assessment

(https://docs.google.com/spreadsheets/d/1vaRf4PXJ7FvxLZplKXRlkiEYDSZP5ajsb3KnETz7Em0/edit#gid=1375297260)

	Sub-principle	<u>ID</u>	Indicator	Priority	Assessment overall	Assessment Essential
Findable	F1	RDA-F1-01M	Metadata is identified by a persistent identifier	Essential	1	1
Findable	F1	RDA-F1-01D	Data is identified by a persistent identifier	Essential		
Findable	F1	RDA-F1-02M	Metadata is identified by a globally unique identifier	Essential		
Findable	F1	RDA-F1-02D	Data is identified by a globally unique identifier	Essential		
Findable	F2	RDA-F2-01M	Rich metadata is provided to allow discovery	Essential		
Findable	F3	RDA-F3-01M	Metadata includes the identifier for the data	Essential		
Findable	F4	RDA-F4-01M	Metadata is offered in such a way that it can be harvested and indexed	Essential		
		DD 4 4 4 6 4 4 4				

D	Indicator	Description	Assessment details
RDA-F1-01M	Metadata is identified by a persistent identifier	This indicator evaluates whether or not the metadata is identified by a persistent identifier. A persistent identifier ensures that the metadata will remain findable over time and reduces the risk of broken links.	The persistence of an identifier determined by the commitment of the organisation that assigns and manages the identifier, so the evaluation of this indicator needs to take into account the persistence policy of that organisation. Such a commitment could be expressed by a university or research institute, by a research infrastructure or by an organisation that issues formal identifiers, such as the International DOI Foundation. A possible way to evaluate this indicator is to verify that the identifier used for the metadata is listed ina registry service like the RDA-endorsed FAIRsharing.
RDA-F1-01D	Data is identified by a persistent identifier	This indicator evaluates whether or notthe data is identified by a persistent identifier. A persistent identifier ensures that the data will remain findable over time andreduces the risk of broken links.	The persistence of an identifier is determined by the commitment of the organisation that assigns and manages the identifier, so the evaluation of this indicator needs to take into account the persistence policy of that organisation. Such a commitment could be expressed by a university or research institute, by a research infrastructure or by an organisation that issues formal identifiers, such as the International DOI Foundation. A possible way to evaluate this indicator is to verify that the identifier used for the data is listed in a registry service like the RDA-endorsedFAIRsharing

FAIR - H3Africa Data

Assessed the H3Africa Chip project data according to the indicators: - 100% on the Assessment for the level of Essential, 76.19% on Assessment Non-Essential with an overall Assessment score of 87.8%

E	H3ACHIP ACCME RDA FAIR indicators assessement TEMPLATE	☆ 🖭 🙆	, , ,		~ 🔳	1
-	File Edit View Insert Format Data Tools Add-ons Help Last edit was	6 minutes ago			, ,	ت
- 3	○ ○ □ □ 100% - £ % .0 .00 123- Default (Ari 10 - B	I \$ A ♦.	⊞ 55 - ≡	+ <u>↓</u> + † + ♭	·+ c-> ± 11.	7
D50	- fx					
	D	E	F	G	Н	
31	Metadata includes qualified references to other metadata	Important	1 *		1	-
32	Metadata include qualified references to other data	Useful	1 *	2	1	
33	Plurality of accurate and relevant attributes are provided to allow reuse	Essential	1 -	1		
34	Metadata includes information about the licence under which the data can be reused	Essential	1 *	1	8	
35	Metadata refers to a standard reuse licence	Important	0 -	5	0	
36	Metadata refers to a machine-understandable reuse licence	Important	1 *	-	1	
37	Metadata includes provenance information according to community-specific standards	Important	0 -	2	0	
38	Metadata includes provenance information according to a cross-community language	Useful	0 •	-	0	
39	Metadata complies with a community standard	Essential	1 *	1	-	
40	Data complies with a community standard	Essential	1 -	1	7.	
41	Metadata is expressed in compliance with a machine-understandable community standard	Essential	1 -	1		
42	Data is expressed in compliance with a machine-understandable community standard	Important	1 -		1	
43						
44						
45		Sum	36	20	16	
46		Score total	87.80%	100.00%	76.19%	
47	vant category)	Score applicable	87.80%	100.00%	76.19%	
48		% NA	0.00%	0.00%	0.00%	- N/h

🗒 💂 🕪 h3abionet

FAIR - H3Africa Phenotype Data

Kidney Disease
 Prescribed Medications

Stroke History

Dyslipidemia

Infectious Diseases

- Developed the H3Africa STD CRF
 - Form is submitted when H3A projects are ready to submit to the H3Africa Data Archive
 - Standardized response options were included for majority of the requested fields
 - Metadata is mapped to Genomics Cohorts Knowledge Ontology (GECKO: http://www.obofoundry.org/ontology/gecko.html)
 - Consent mapped to Data Use Ontology (DUO: https://github.com/EBISPOT/DUO/blob/ma ster/README.md

Core Phenotypes - Standard CRF
The Core Phenotypes are a recommended set of phenotype data elements broadly applicable across Africa - dubbed the "Std. CRF". Data collected with the Std. CRF provides phenotype data complementing the genomic data generated by H3Africa. The core phenotypes are customised for collection in both adult and pediatric research participants.
Core Phenotypes (Adult): REDCap Project Template, Data Dictionary, Guideline
The Std. CRF pdf files can also be downloaded individually and used for on-site data collection:
Download the entire zipped set of CRF instruments (in pdf and MS Publisher)
OR, select individual pdf forms from the Std. CRF
Demographics
Smoking Status
Alcohol Consumption
Drug Use
Anthropometrics
Blood Pressure
Urine Test Results

_					
	НЗАВі	oNet Example Study Name	Page 1 of 1		DEM01
	PID:		Visit Date:		
	Visit:		DEMOGRAPHICS	dd	МММ уу
	1.	What is your date of birth?	dd MMM yy	OR	☐ Don't know
		1.1. About how old are you? (ONLY If date of birth unknown)	years me	onths	weeks days
	2.	Are you male or female?	male female ot	her	refused
	3.	What is your country of birth?		OR	☐ Don't know
	4.	What is your native language?		OR	☐ Don't know
	5.	What is your ethnic or tribal affiliation?		OR	☐ Don't know
	The	e following questions relate to your	father:		
	6.	What is your father's country of birth?		OR	☐ Don't know

NIH DS-I Africa Initiative

- Harnessing Data Science for Health Discovery and Innovation in Africa
 - Research Hubs: Advance and demonstrate feasibility of data science research and innovation to improve health in Africa
 - Training: Increase capacity for data science research in Africa
 - ELSI Research: Explore Ethical, Legal, and Social Implications of data science research from an African perspective and contribute to policy discussion on the continent
 - Open Data Science Platform & Coordination Center: Facilitate the development of a trans-African network of data scientists

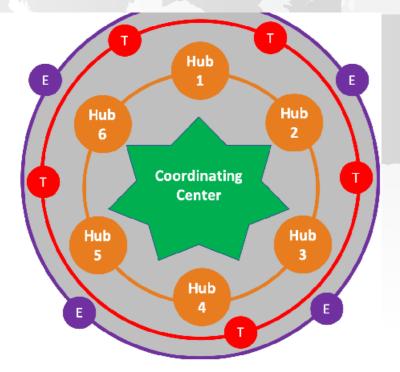
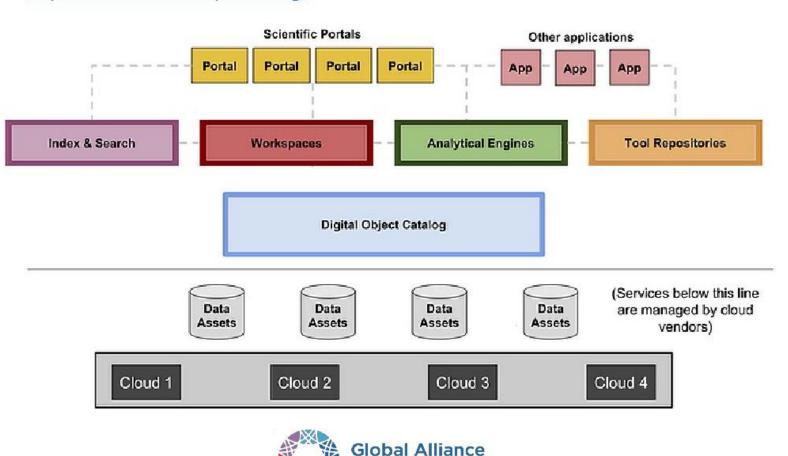


Image and text extracted from: https://commonfund.nih.gov/africadata

eLwazi Open Data Science Platform

- To develop an African Open Data Science Gateway, including the eLwazi platform and associated resources, to support the Harnessing Data Science for Health Discovery and Innovation in Africa (DS-I Africa) consortium and beyond. eLwazi, will be a flexible, scalable Open Data Science Platform enabling the implementation of data science for health, that is relevant to the African context.
- Facilitate the development of a trans-African network of data scientists

Ulwazi is the Xhosa word meaning "knowledge" or "information", and Olwazi means big rock in Luganda

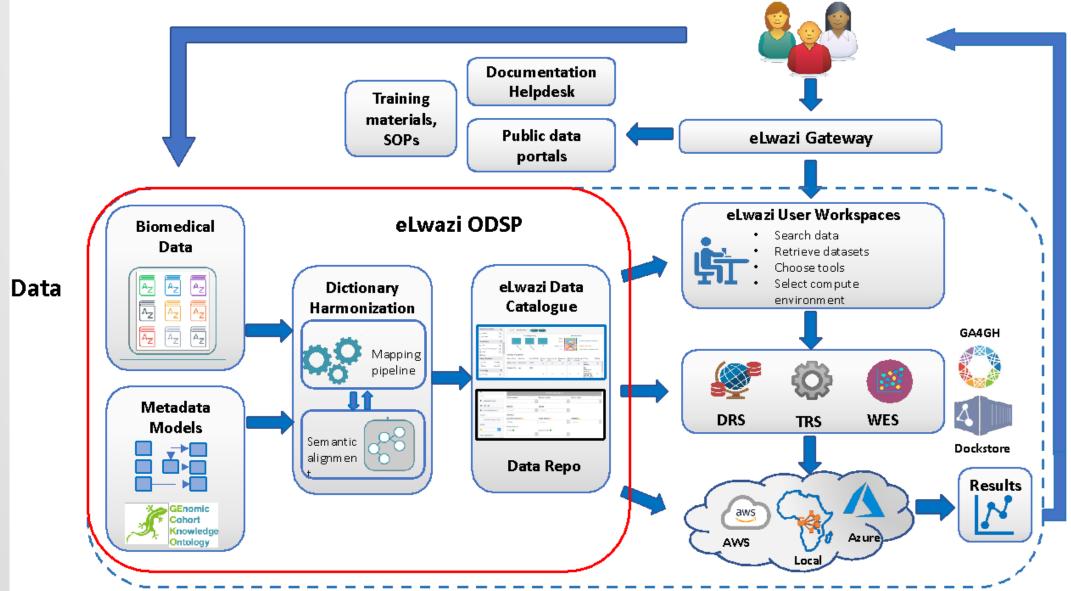

eLwazi Open Data Science Platform

Data biosphere

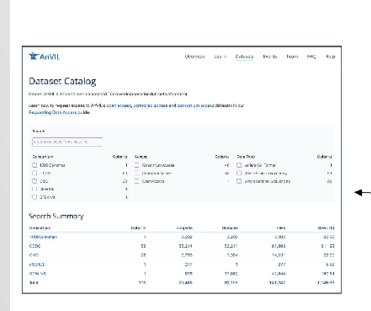
https://www.databiosphere.org/

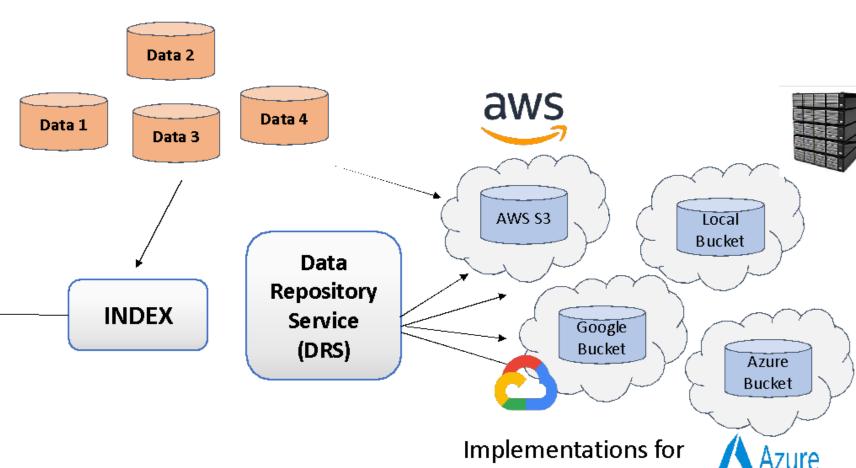
for Genomics & Health

Applications



Overview of the ODSP

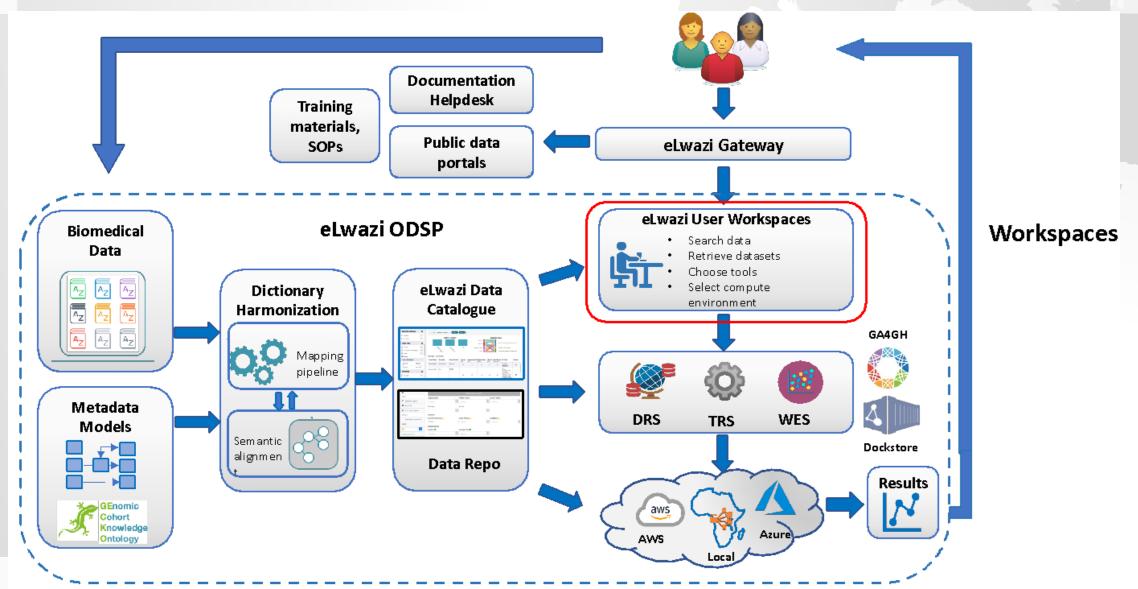




Data and Meta-data store

Data registry

Data Browser query interface


each computing

environment

Data Analysis

Data Analysis

Log into project work space

Identify datasets from registry

Extract relevant data

Select tools from registry

Run in Cloud

Welcome to eLwazi

The eLwazi Open Data Science Platform is a project powered by Terra for biomedical researchers to access data, run analysis tools, and collaborate.

Find how-to's, documentation, video tutorials, and discussion forums 17

View Workspaces

Workspaces connect your data to popular analysis tools powered by the cloud. Use Workspaces to share data, code, and results easily and securely.

View Examples

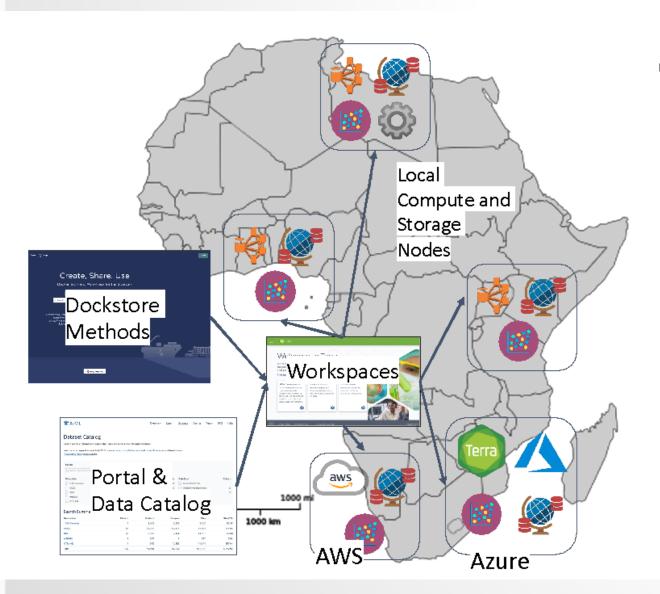
Browse our gallery of showcase Workspaces to see how science gets done.

Browse Data

Access data from a rich ecosystem of data portals.

https://elwazi.terra.bio/

Workspaces bring together metadata, data, and compute environments through a web-based user interface. Access for beginner and advanced users



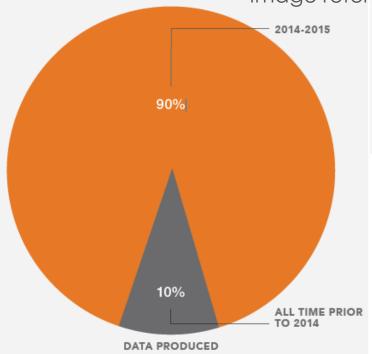
eLwazi ODSP hosting sites

Cloud & HPC Environments

DRS for data access

Workspaces for:

- Data modeling and access
 - Compute on data in various locations
- Interactively analyze via Notebooks
- Sharing and Collaborating


Conclusions

GROWTH OF DATA IN THE WORLD TODAY

90 percent of the world's data was created in the last two years.

Image reference: https://data.bsa.org/wp-content/uploads/2015/12/bsadatastudy_en.pdf

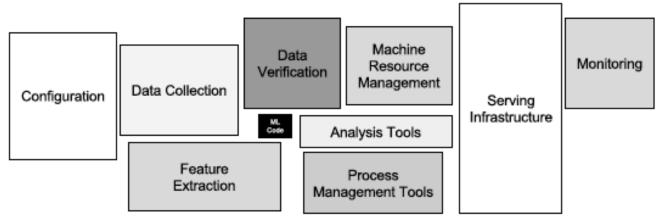


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

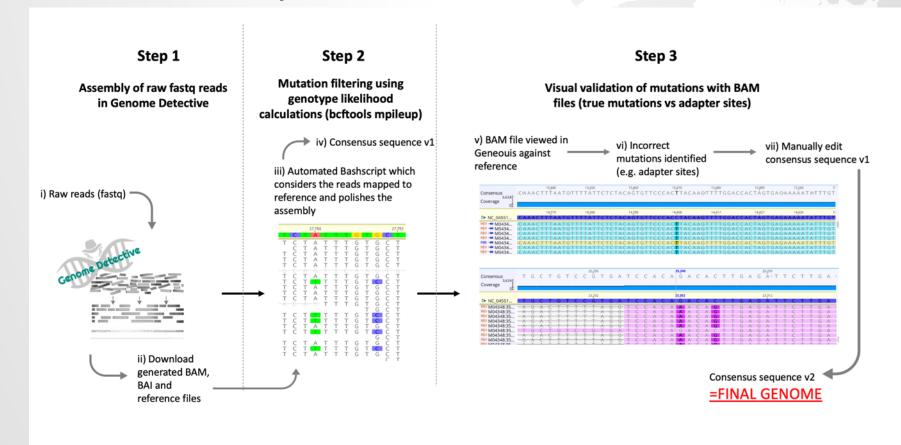
Hidden Technical Debt in Machine Learning Systems:

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a24 63eba-Paper.pdf www.h3abionet.org #h3abionet

Acknowledgements

H3ABioNet Consortium

National Human Genome Research Institute: U24HG006941



Assembly of SARS-CoV-2

Objective: To quickly and accurately generate high-quality whole genomes of SARS-CoV-2 that are well annotated and available in public databases.

Data curation for SARS-CoV-2

MicDetect AGM 2020 session description:

The KRISP <u>MicDetect</u> project would like to provide a practical bioinformatics session on cleaning, assembling, depositing and <u>analyzing SARS-CoV-2</u> genomes.

The hands on practical session will entail:

- Using Genome Detective platform to assemble SARS-CoV-2 genomes
- Using genotype likelihood to perform mutation filtering
- Using next clade to QC mutations and refine consensus sequences
- Using Geneious to perform manual QC of mutations to produce high quality genomes
- · Basic phylogenetic analysis for genomic epidemiology studies of COVID-19

The session would require H3ABioNet members to: have access to a laptop or desktop with Linux or Mac OS with the following tools installed:

- Bedtools: https://bedtools.readthedocs.io/en/latest/content/installation.html
- BCFTools: http://www.htslib.org/download/
- Geneious prime (trial version is sufficient): https://www.geneious.com/free-trial/

Consensus v1

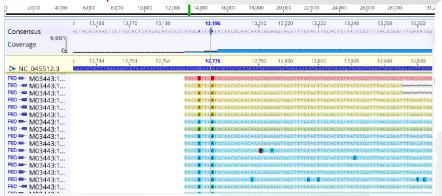
Manual correction of wrong mutations

Consensus v2 = FINAL GENOME

How to spot wrong mutations:

- Indels
- Mutations that cause stop codons in the middle of a genes
- Apparent adapter sites not being trimmed out properly
- "Expected" mutations

How to correct genomes:

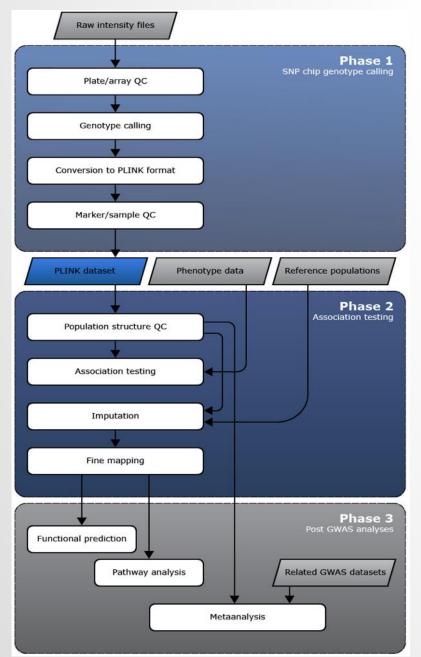

- Upload the FASTA sequencing into Genome Detective
- Find location to be edited by inspecting the mutation on Genome Detective and copying a short length of sequence before or after the mutation
- Search for that sequence in the FASTA text file
- Manually edit sequence in FASTA text file (back to the reference base if mutation is wrong)
- Be very careful at this step to not mistakenly insert other false mutations

Correct mutation

Here, we are looking at a correctly called mutation, indicated by consistent base change (23403A>G), mostly in the middle of long reads.

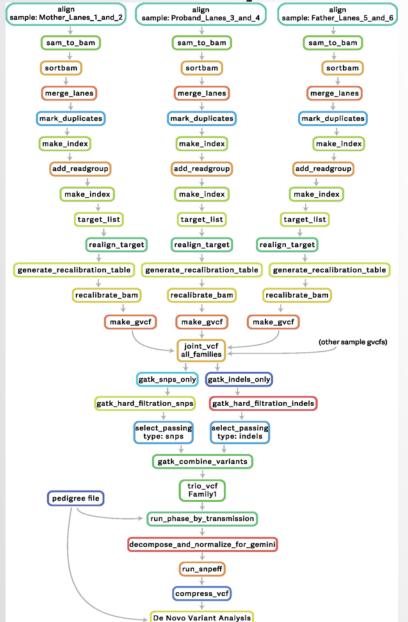
Untrimmed adapter sites

Here, we are looking at an incorrectly called mutation (12778C>A), which appears to be the result of an adapter site that was not trimmed. These sites will often appear at the end of reads.



Slides courtesy of: Houriiyah Tegally, San Emmanuel James and Prof. Tulio De Olveira, KRISP, UKZN https://www.genomedetective.com/app/typingtool/virus/

Reproducible Science - Pipelines


- Bioinformatics analyses
 directing files through a series
 of transformations and
 programs to a final output i.e. a
 computational pipeline
- Transformations typically done by third-party executable command line software written for Unix-compatible operating systems
- Manually started when previous transformation step completed e.g. qsub command run

Reproducible Science - Workflows

- A workflow is a description of a process (pipeline) that consists of a series of tasks connected in the form a directed graph
- Tasks can be defined as single units of work e.g. split files
- A workflow comprises of an initial unique task and ends with a unique terminal task
- Completion of a task can initiate one or more tasks
- Enables automation e.g. run a pipeline from start to finish without manual input (pipeline)

H3ABioNet Workflows project

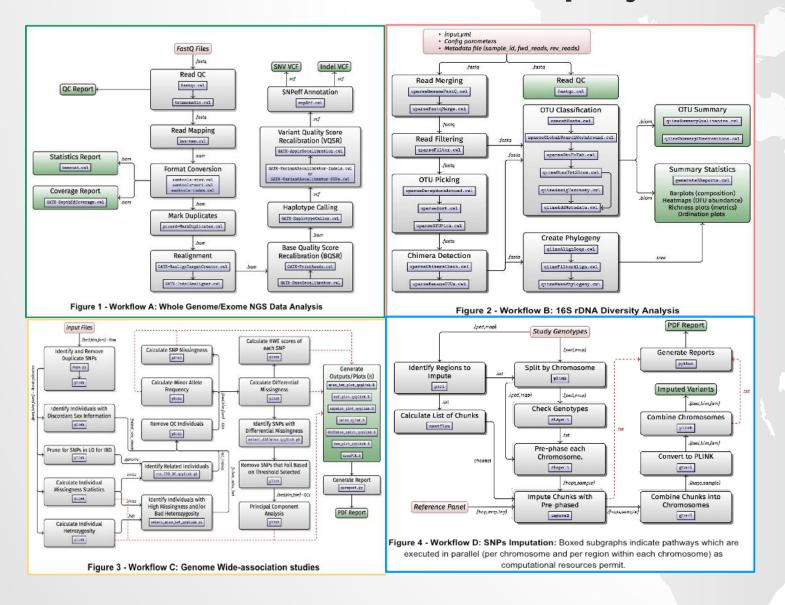


Image credits: Phelelani Mpangase, SBIMB, Wits Availability: https://quay.io/search?q=h3abionet https://github.com/h3abionet