Al based Microscopy diagnosis of Malaria
Al for Health Workshop 2019

Rose Nakasi
2 A 2

Makerere University
Artificial intelligence and data science Lab

2/9/2019

1/24



Microscopy Diagnosis
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Figure: Gold standard for diagnosis of malaria is a_microscope
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Health diagnostic burden

Currently in Uganda, and many developing countries

e Malaria has been
reported as one of the
leading cause of death
accounting for over
27% of lives of
Ugandans

e Patient in big numbers
wait to be diagnosed.
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Currently in Uganda, and many developing countries

e Most of these countries
don't have enough
trained lab technicians.

e In Ghana, 1.72
microscopes per
100,000 population,
but only 0.85 trained
laboratory staff per
100,000 population .
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Microscopy Diagnostic challenge

Currently in Uganda, and many developing countries
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e SOP requires not to
view more than 20
slides a day

e |Microscopy is eye
straining
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Concept detail

Figure: Adapter set up and attachment.
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Concept detail




Concept detail




Captured image

Figure: Malaria microscopic image captured with a

smartphone.

Do
9/24



Plasmodium detection accuracies
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Figure: Plasmodium detection results.
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ROC AUC for malaria, TB and intestinal parasites
detection
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Figure: Deep learning ROC accuracies.
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Detected Objects for plasmodium (left) and
bacilli(right).
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Server end app.
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Figure: Before detection.
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Server end app.
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Figure: After detection.



Framework assessment requirements

Reasons to consider for an effective clinical framework;
e Representativeness in data
e Explainability

e Potential biases in the data.
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Representativeness in data

Training data is from a different context;

e Obvious case: do not use European training data for medical
diagnostics in East Africa.

e Less obvious case: Medical diagnostics data could use
training data from East Africa for an algorithm in West
Africa — may under-diagnose malaria.

Training data is imbalanced;

e Data that is not balanced in terms of pixel dimensions,
shape, color etc may bias certain algorithms to favor certain
groups
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N
Explainability

Ethical coonsiderations;

e Do Organizations think of ethics when using data/outcomes
from algorithms, resulting organizational values not being
captured in outcomes.

Relevancy / Value;

e Should organizations be using Al and does Al provide enough
value that offsets potential complications?

Transparency;

e How transparent are the algorithms/outputs?
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Potential data Biases

Does your data have biases reflected in it? If so, your algorithms may
amplify these biases;

e Due to poor annotations.
e Different image dimensions.

e Different environments under which the images were
captured.
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What can we do?

e Auditable algorithms
e Implement fairness

e Accountability and responsibility
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Auditable algorithms

Bias is introduced at the algorithm level

e Developers are making decisions to choose between equity,
accuracy, speed

Ensure that algorithms are auditable;

e Can they be monitored by external actors? How can you test
the algorithms?
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Fairness

Data will never be perfect. How will we deal with imperfect data?

e Getting better data

e Implementing fairness/equity at the algorithm level
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Accountability and responsibility

What mechanisms can we add to make sure that we are holding ourselves
and algorithms accountable?

e We work in complex situations and downstream effects are
hard to predict

e Build in monitoring to make sure that we can adapt to and
fix inequalities that result

e Above all, an Al Assessment Framework to guide Al for
health Solutions.
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Thank you!

Questions?
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