

Telecommunication
Networks and
Telematics Lab

Green networking: lessons learned and challenges

Prof. Raffaele Bolla

raffaele.bolla@unige.it

CNIT/University of Genoa

Amsterdam, 22 October 2014

Summary

- Previous results: the FP7 experience
- Lessons learned
- Current challenges
- Conclusions

Recent (EU-FP7 projects) approaches in

ECONET experience and results Demonstration Activities

See the online demo portal at https://www.econet-project.eu/demo

ECONET experience and results

Demonstration Activities

Short term

Average energy reduction of 51.6%.

Saving of more than 190 Million € per year of OPEX. Average energy real settions of p7r7n6%.

per year of PEX. removing 50,000 Carbperfoesprint emissions reduction equivalent of **removing 75,000** cars per year.

Long term

Lessons Learned (1/3)

- Energy-aware hardware and autonomic low level power management mechanisms are mandatory, but definitely not sufficient.
- Heterogeneous power-saving mechanisms often interfere among each other, and cause heavy drawbacks:
 - · Energy savings are not additive by default
 - Trade-off between energy consumption and network performance
- Power management needs to be driven by upper levels:
 - to map their functional/logical resources and configurations with the underlying hardware
 - to find the best energy-aware hardware configuration that optimizes the trade-off between network performance and device/network energy consumption
- Power management needs to be suitably orchestrated at different levels:
 - · Inside single devices
 - At the device level (logical/physical planes)
 - · At the network level
- Moreover, a relevant push toward standards and regulatory actions is also essential (e.g., KPIs (Key Performance Indicators)).

Lessons Learned (2/3) The Green Abstraction Layer

- One of the main achievements of the ECONET project.
- The GAL is a hierarchical interface to control and to orchestrate power management primitives in a network device in a scalable and flexible way.
- The GAL layers allows to divide and conquer the complex process of optimizing the mapping between power management primitives (acting at the HW level) and the network logical/virtual/ functional configuration.

• The GAL has been approved in March 2014 as **ETSI Standard** 203 237.

Working Item: Reference operational model and interface for improving energy efficiency of ICT network devices

Energy

Future Internet/5G Challenges

Networks as multi-purpose service-aware infrastructures:

Network Infrastructure Efficiency and Future Energy

Future Internet/5G Challenges

In the small

• In order to support all these objectives, we need to deeply re-think and re-design network architectures, devices, and base technologies:

 HW programmability inside networks and devices

HW offloading for high performance

• Extreme virtualization paradigms to make different services sharing network resources

Consolidation of services

System level

Tomorrow, classical network protocols like IP will be considered simply as platform-independent virtualized network services

The Future Internet/5G Challenges The Future Internet basics

Technology Evolution

 Strong presence of programmable/general purpose HW inside networks and devices:

it is the main element for introducing the flexibility necessary for Future Internet architectures development.

Technological Impact

 Costs & greenhouse gas emissions:

sustainability is <u>a must</u> for the Future Internet deployment.

To introduce **effective but sustainable** technologies enabling "**network programmability**" and realizing the **complete integration with information technologies**

is a cornerstone of the Future Internet architecture

The Future Internet/5G Challenges Programmability vs Energy Efficiency

- Fixed the silicon technology, energy consumption largely depends on the number of gates in the network device/ chip hardware.
- The number of gates is generally directly proportional to the flexibility and programmability levels of HW engines.
- If we fix a target number of gates by using
 - General Purpose CPUs, we obtain:
 - Maximum flexibility,
 - Reduced performance (in the order of 100 Mbps/W)

- Very specialized ASICs, we obtain:
 - Minimum flexibility
 - Greatly enhanced performance (in the order of 1 Gbps/W)

- Other technologies (e.g., network/packet processors) provide performance between these boundaries

Programmability currently is energy consuming!

+

The Future Internet/5G Challenges Programmability for Energy Efficiency

Networks as multi-purpose service-aware infrastructures:

- Internet of Services
- Internet of Things
- Network integrated Cloud Services (SDN)
- Network-as-a-Service (NFV)

An example: a new project in H2020

In-Network Programmability for nextgeneration personal cloUd service supporT

Participant	Participant organisation name	Short Name	Country
No			
1	Consorzio Nazionale Interuniversitario per le	CNIT	Italy
(Coordinator)	Telecomunicazioni		
2	Ericsson Telecomunicazioni S.p.A.	TEI	Italy
3	Gioumpitek Meleti Schediasmos Ylopoiisi Kai Polisi	UBITECH	Greece
	Ergon Pliroforikis Etaireia Periorismenis Efthynis		
4	Dublin City University	DCU	Ireland
5	HOP Ubiquitous S.L.	HOPU	Spain
6	Infocom S.r.l.	INFO	Italy
7	Cosmote Kinites Tilepikoinoneis AE	COS	Greece
8	Telecom Italia S.p.A.	TI	Italy
9	Julius-Maximilians Universitaet Wuerzburg	UWUERZ	Germany

INPUT will enable cloud applications

- to go **beyond classical service models** (i.e., IaaS, PaaS, and SaaS)
- and to *replace physical Smart Devices* (SD) with their "*virtual images*,"

providing them to users " $as\ a\ Service$ " ($SD\ as\ a\ Service-SDaaS$)
The virtual image will allow to reduce the carbon footprint of appliances of 50% - 75%.

An example: SDN, NFV and distributed/ multi-core router architectures

Services

Acceleration

Engines

Traffic

 $I_{nterconnection}$

 El_{ement}

Openflow redirection, loadbalancing & network offload

SW-based & General Purpose HW for value-added and heterogeneus network processing

(Software Routers)

Network Services (e.g.

Our vision

- To extend network devices and architectures to directly integrate multiple and heterogeneous applications, functions and services.
- Classical or innovative network services/ functions are just software objects dynamically allocated (e.g., by OpenFlow) to general purpose or specialized hardware resources.
- The modularity and flexibility of this approach, among others, open the possibility of driving software object allocation by means of very effective energy efficient polices.

This is a «cloud» Distributed SWROuter prototype/ «multi-purpose» «energy-efficient» Openflow/ForCES signaling architecture $l_{nterconnection}$

- Allocation on general purpose elements

CE

Dynamic redirections from accelerators

between energyconsumption and QoS per service

General purpose Cores We control the interactions with

"OpenFlow in the Small"

- Dvnamic offloading by means of accelerators

Control Elements rators
Given trade-off

Network Infrastructure

Conclusions

- The energy consumption in Networks (and more in general in ICT) is currently still a very relevant issue
- Trend based on both recent technologies and especially new innovation challenges (virtualization and performance) are moving the motivations from environmental impact and cost reduction to sustainability/scalability
- Smart power management should be able to give affordable solutions, but
 - Energy efficiency should be a main target of the new technologies, not a "simple" constraint.
 - The energy consumption management has to be natively integrated in network control and management systems like, e.g., performance and fault recovery.
 - The integration process acting in Network and IT strongly suggests to manage this issue (or may be everything) with integrated approaches (within same unified "tools")
 - Standard and regulatory actions are essential (including KPI)

Thanks for Your Kind Attention

Any Questions?