

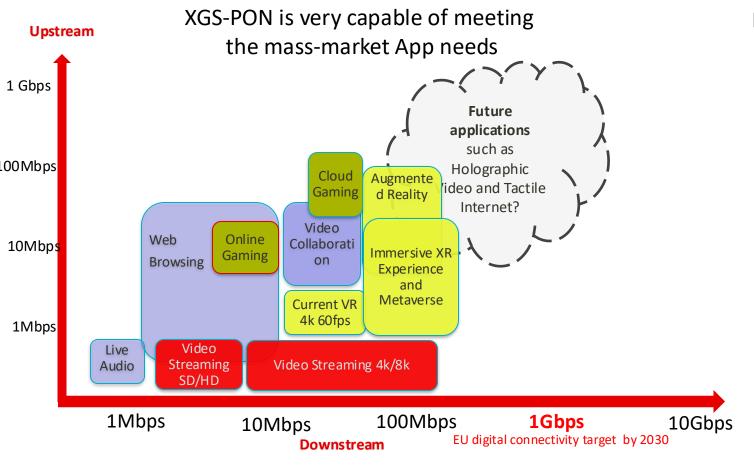
Overview

SITUATION TODAY

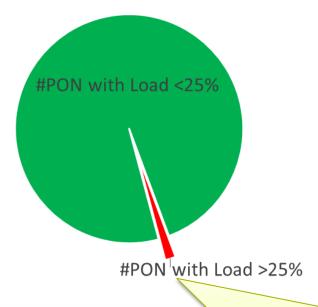
- Speed/capacity requirements
- Customer requirements for extended WiFi coverage
- What we have learned: How to improve the FTTR solution

LOOKING FORWARD

- WiFi/FTTH systems capacity alignment
- The complimentary nature of FTTR with mmWave WiFi8



Situation TODAY


Application Requirements & FTTH Capacity TODAY

Speed is not a problem for consumers

Capacity is not a problem

Even our GPON networks today are not fully utilized

Of thousands of active GPONs, only1% are loaded more than 25% in downstream (12% in upstream)

The top loaded PONs have an average utilization of ~30%

Virtually no residential customers even burst beyond 500Mbps today, apart from when running a speedtest or doing a software update.

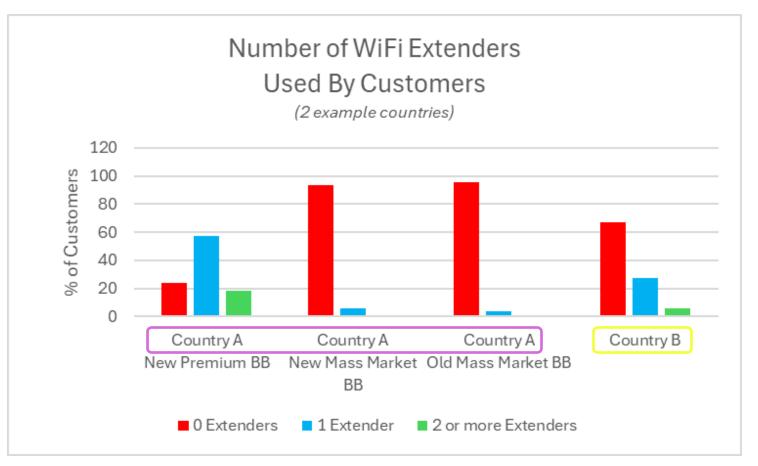
Bit rates for business services may be much higher.

WiFi Coverage: Extender Use (2 example countries)

Country A:

Primarily Houses

- Premium Broadband (BB) bundle: Includes 1 'free' extender. Others available (for free) on request if measurements show its necessary.
- Mass Market Broadband products Incur incremental cost per extender.


Country B:

Apartments in cities, houses in rural areas

- Customers can get an extender sent if telemetry shows poor coverage.
- For other customers, it is an

- Hence extender use is more prevalent in those taking premium bundles
- Today <10% of customer devices connecting to our WiFi hubs/extenders are even capable of using the 6GHz band
- Emphasises the fact that FTTR to improve WiFi coverage/performance likely to be niche in the near-term

Comparison of FTTR vs WiFi with Extenders

Fibre To The Room (FTTR)

- ✓ Consistent ultra fast speed and low latency across all rooms – removing the need to depend on WiFi capacity
- ✓ Potentially cost effective to offer to MDUs vs. gaining permission to lay FTTH fibre in building/apartment

- **芩** High installation (compared to Wifi extenders) and lifecycle management costs
- × Niche customer appeal:
 - Limited take-up where we have launched FTTR (P2MP variant)
 - Particularly challenging in price sensitive markets

Broadband Hub + WiFi extenders

- ✓ Latest generations of WiFi technology e.g. WiFi 7, will reduce performance gap vs. FTTR
- ✓ **Signal degradation** away from the main router is typically not noticeable for most customers
- ✓ Wide device compatibility; Our latest CPE devices are Matter-ready to enable the connected home
- ✓ Cost-effective deployment and easy to install

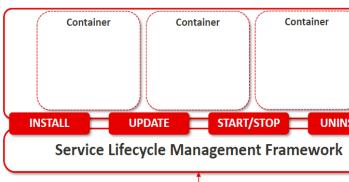
➣ Inconsistent performance as coverage and speed can vary depending on wall materials, interference, and extender placement

Interviews

CPE Architecture in Vodafone

Agile Service Delivery Platform based on Global/Open standards

- RDK-B for Service Delivery Platform (SDP)
- BBF for Broadband Hub & WiFi Extender management (i.e. USP/TR-369)
- BBF for Data Model (TR-181, inc. WiFi Data Elements with WiFi Alliance & CableLabs)
- Prpl Foundation for Lifecycle Management (LCM)



- Enables rapid deployment and Time-To-Market (TTM) of new services
- New services pushed to customers via USP and use prpl LCM
- The new functionality is instantiated in containers
 - Enables instant enablement, no CPE reboot
 - Faster integration & test of service-enabling client SW from partners

PLUS

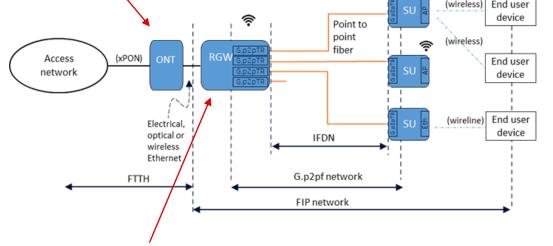
 TMF (& CAMARA) for Northbound APIs

What have we learned, how can we improve the FTTR solution?

1. Increasing broadband speed has reached a point of diminishing returns in terms of customer benefits

- Multiple 4k UHD video streams don't look any better on a 2Gbps fibre bearer than on 1Gbps!
- Reduced latency is not an easy sell Gamers get it, but it can be challenging to market better "responsiveness" to average consumers
- 2. Customers are increasingly attracted by convenient value-added services
 - These address key issues around home security, family protection, connected home device control, energy management ...
- 3. The installation time/cost (plus appointment scheduling of an engineer if not self-install) is a hassle for some customers when compared to WiFi extender self-install and hence is a barrier (as it was with ADSL splitters in the late 1990s, before the advent of self-install microfilters)
- 4. The solution needs to also work where we use wholesale FTTH instead of self-build
 - Ideally, avoid an excessive number of boxes (>2) requiring additional space & power outlets

In order to address these issues, we need to modify the FTTR modularity & form-factor


How could FTTR solutions better meet our requirements?

Topology options

- P2MP can have a role in some MDU scenarios, to reduce the cost of fibre runs (with an incremental cost of splitters).
 This P2P connectivity could also be based on existing PON standards.
- We also need a simple, self-installable P2P solution (as per G.p2pf) which will suffice for many homes
 - Often, improved WiFi coverage and fastest speed is only required in 1 or 2 rooms. Star & daisy-chain topologies should be viable options

– Simple compatibility with wholesale-provided FTTH (wholesalers Or as per G.ρ2pf option) is essential for national market

coverage

Service Delivery

 Any FTTR solution must fit with our CPE services delivery architecture & devices so that we have homogeneity across all home routers and WiFi Apps/extenders (rather than a ring-fenced variant just for FTTR customers, which increases service development complexity)

- This facilitates alignment with the global standards we use for the broadband services layer (RDK-B, BBF, prpl Foundation, TMF,

Options for Connecting FTTR transceivers to Hub & extenders

1. Use a simple media converter (10G electrical Ethernet to Ethernet over fibre)

- ✓ Already demonstrated in an operator's deployment in Spain
- Zero impact on existing Broadband Hub and extender hardware
- X Extra box(es) for the customer to power

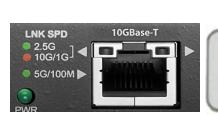
2. Integrate the FTTR transceiver into the Hub (1 for P2MP, 2 for P2P)

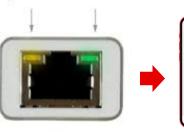
- This is similar to the integrated ONT WAN option which we have already deployed in some self-build Local Markets
- However, for FTTR, it is only justified with proven very high-volume take-up. (This appears to be unlikely in the near-term for Europe, as our P2MP FTTR deployment has shown)

3. Have SFP+ cages/LAN port(s) on the Hub that an SFP+ FTTR transceiver could plug into

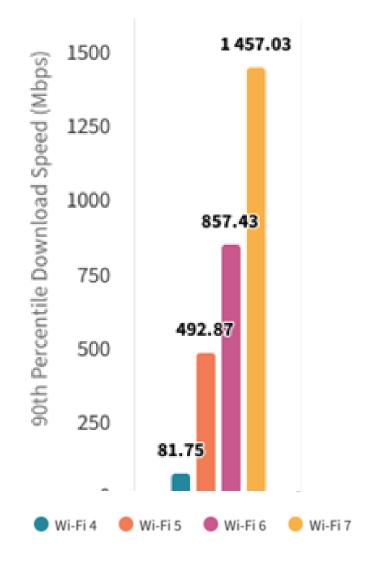
- Less cost on the Broadband Hub & extenders than option 2 and less boxes than option 1.
- Would need 1 cage for P2MP, preferably at least 2 for P2P FTTR (simple Ethernet over fibre)

Potential components in a modular FTTR solution


- Invisible fibre self installable
 - Needs to pass local fire safety & security regulations (especially in MDUs)
 - Include a slack fibre storage module


- Pluggable FTTR optics (Pre-connectorised, that can plug directly into a Broadband router* and WiFi extenders to leverage our value-added services via a "1-box" solution
 - This makes the solution more like the add-on Powerline in-home networking products which many customers used a few years ago
 - An Ethernet media converter option can help with legacy CPE

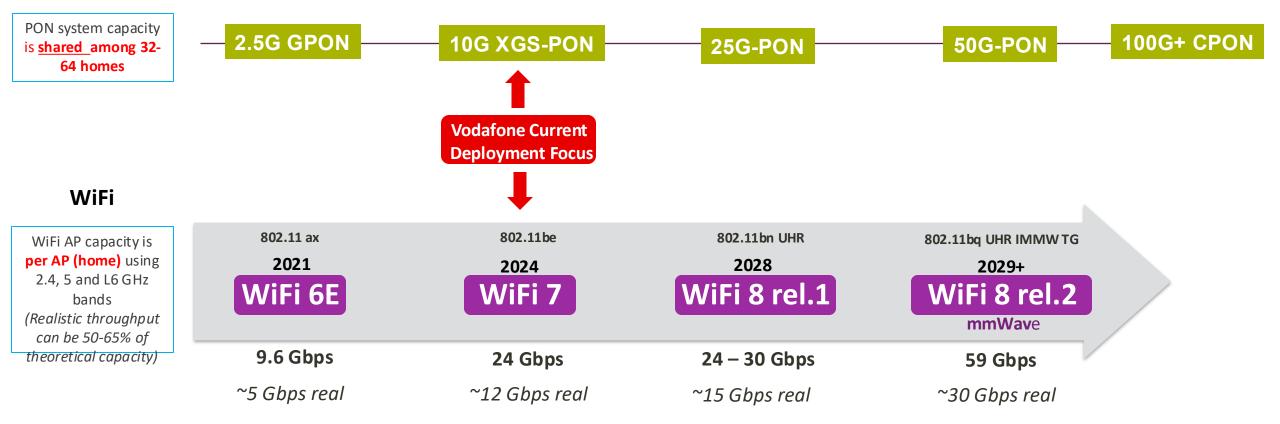
- **Diagnostics**: Even very simple telemetry functionality (equivalent to Ethernet link light) should ideally be accessible via BBF USP (inc. standardised data model) for integration with
- capublic existing back-end analytics and customer-facing broad and analytics and customer-facing broad analytics analytics analytics and customer-facing broad analytics analyti


The picture shows SFP WAN port, but 1 or 2 SFP+ 10G LAN ports for pluggable FTTR optics could be adde

Looking Forward

C1 Public 12

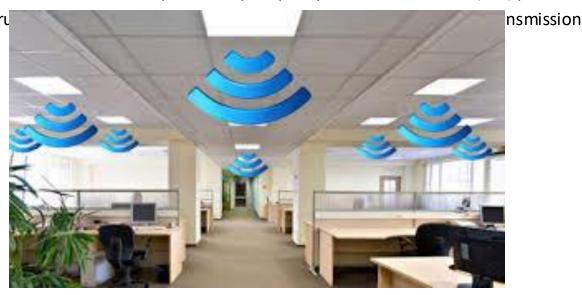
WiFi7 is required for FTTH to reach Gigabit speed



WiFi evolution can leverage the capacity of faster PON

Comparison between shared capacity in Wi-Fi and PON

FTTH



mmWave will dramatically expand WiFi Capacity

- Suitable for high capacity, short-range environments (but won't go through walls!)
- mmWave WiFi also facilitates more accurate WiFi sensing capabilities*
- Previously, the mmWave RF transmission was proven in the WiGig protocol 802.11ad/ay
- WiGig provided 8 Gbps on Single carrier 2160 MHz Channel, up to 40 Gbps capacity @60GHz mmWave (LoS) per AP

Bandwidth depended on available spectrutechniques

mmWave will be enhanced for wider applicability in WiFi 8 rel.2 (802.11bg UHR IMMW TG)

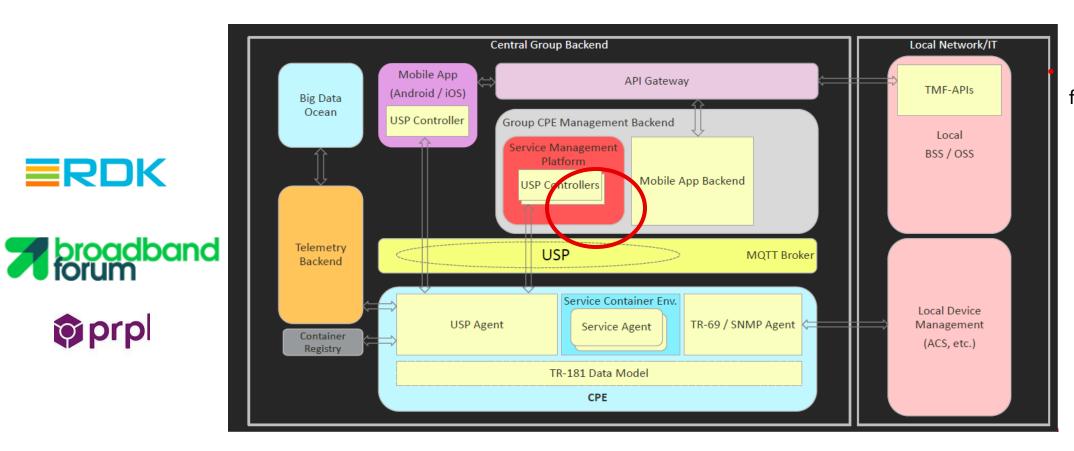
mmWave Wifi is a Perfect complement for Fibre-To-The-Room (FTTR)

SUMMARY

- FTTR prospects of successful deployment in our European markets requires products better aligned to our CPE and home technology architecture requirements:
 - Modular solution with topology options (inc P2P) to adapt to customer segment and their dwelling situation (MDU vs house etc.)
 - Complementary "add-on" to our unified Hub/WiFi Service Delivery Platform architecture (which is standards based, not Vodafone-specific)

- FTTR is a natural compliment to mmWave WiFi
 - The combined capabilities of these 2 technologies warrants further analysis to assess its potential to be the "ultimate in in-home connectivity"

Back-Up Slides



C1 Public 17 23 October 2025

CPE Architecture in Vodafone (more detail)

Agile Service Delivery Platform based on Global/Open standards

- **RDK-B** for Service Delivery Platform (SDP)
- **BBF** for Broadband Hub & WiFi Extender management (i.e. USP/TR-369)
- **BBF** for Data Model (TR-181, inc. WiFi Data Elements with WiFi Alliance & CableLabs)
- **Prpl Foundation** for Lifecycle Management (LCM)

PLUS

TMF (& CAMARA) for Northbound APIs

prp

WiFi capacity Roadmap

WiFi emerging capabilities fulfil todays and emerging applications (using only 2.4, 5 & lower 6GHz WiFi bands)

2021 2024 2028 2030 (?)

WiFi 6E

802.11 ax

802.11 be

WiFi 8 rel.2
(9)
802.11bq UHR IMMWTG

Max capacity per AP

9.6 Gbps (1)

- •Bands 2.4, 5 GHz and lower 6GHz
- •1k QAM
- •160 MHz channel
- MU-MIMO (up to 8 Spatial Streams) (12)

24 Gbps (3)

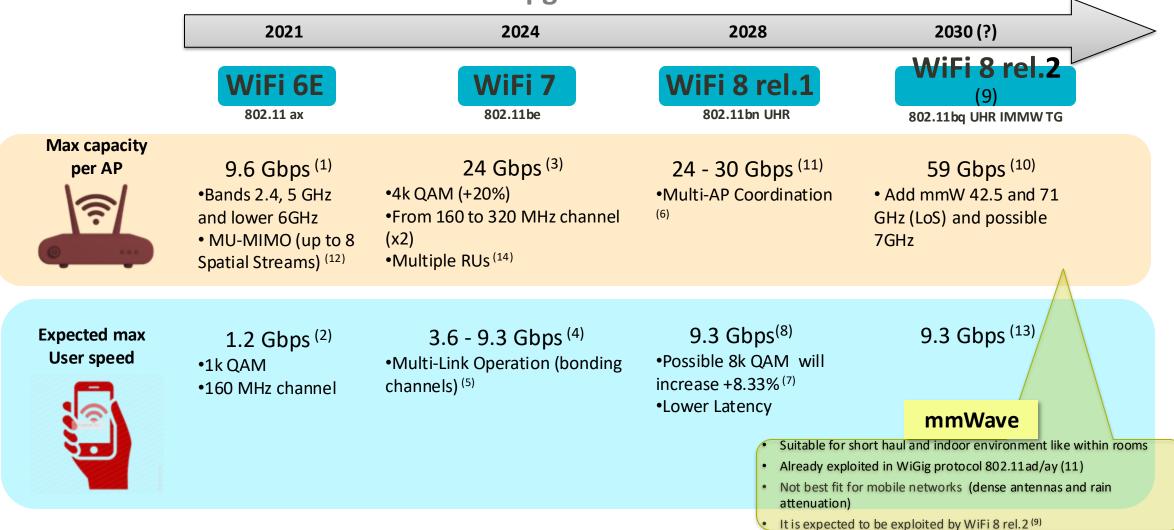
- •From 160 to 320 MHz channel (x2)
- •4k QAM (+20%)
- •Multi-Link Operation (bonding channels) (5)
- Puncturing
- •Enhanced Target Wake Time
- Advanced MU-MIMO
- •Multiple RUs (14)

24 - 30 Gbps (11)

- •Multi-AP Coordination
- •Possible 8k QAM will increase +8.33% (7)
- Lower Latency

59 Gbps (10)

Add mmW 42.5 and 71
 GHz (LoS) and possible
 7GHz


- Significantly increased throughput with 2.4GHz, 5GHz and Lower 6GHz (& with less variation)
- Reduced latency
- Much improved spectral efficiency allowing high crowded served area
- Robustness against interference (via MLO & puncturing)

- ✓ Suitable for high capacity, short-range environments (Factories, school classrooms, venues, offices,...)
- Perfect complement for Fibre-To-The-Room (FTTR) in homes (ITU standard now available)
- ✓ Previously the mmWave was proven in the WiGig protocol 802.11ad/ay

Note on figures: Bit/rates are theoretical. Actual speeds depend on environment, interferences, distances etc. cAll Bit/rates are calculated considering only 6GHz lower band (5925 – 6425 MHz) Footnote are n backup slides.

WiFi Roadmap – Access Point & Handset

Max bit-rate and new features on each upgrade

Note on figures: Bit/rates are theoretical. Actual speeds depend on environment, interferences, distances etc. All Bit/rates are calculated considering only 6GHz lower band (5925 – 6425 MHz).

