IEC-ITU-T Workshop 🐯

Standardization Roadmap for Cabled Multi-Core Fibre and Optical Network Sensing Technologies

Trends in Submarine Networks and Expectations for Multi-Core Fiber Deployment

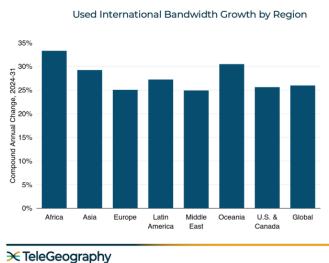
Alcatel Submarine Networks

ASN External use

17/10/2025

Introduction - Context

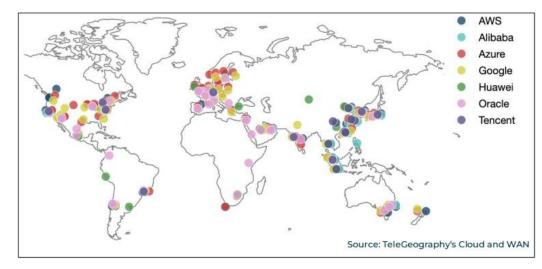
Artificial Inteligence (AI) is the main driver for capacity:


- Demand still growing at a significant pace.
- 25 to 33% depending on the routes, average 26% (Source Telegeography),
- Doubling every 3 years

Be prepared for the impact of AI full scale usage

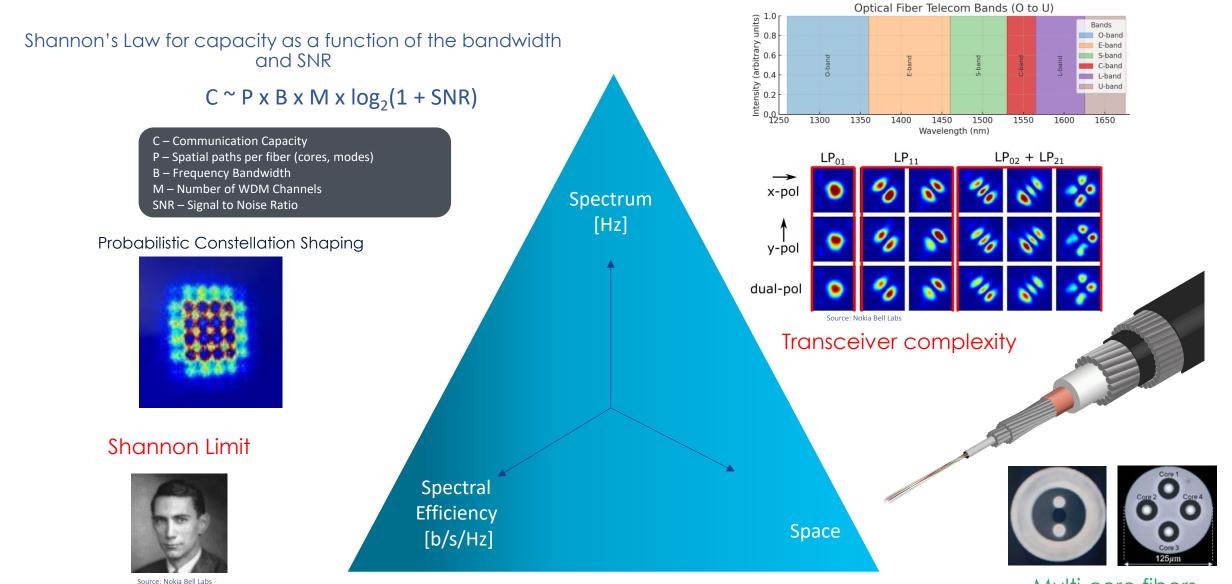
In Submarine systems: several 24 FP / 500 Tbps systems becoming life in 2025

Capacity demand: needs for Petabit cables


Strong demand growth globally

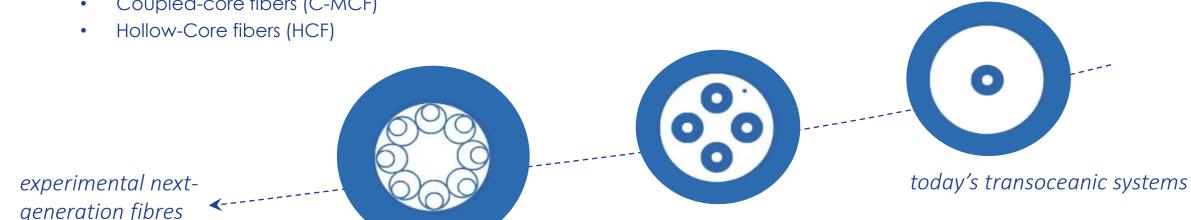
- Globally, used international bandwidth is expected to grow at a 26 percent CAGR from 2024-31.
 - This rate of growth implies a doubling roughly every 3 years.
- International links connected to Africa are expected to have the fastest growth, increasing at a 33% CAGR.

www.telegeography.com


Existing and Planned Cloud Data Centers

Introduction: increasing Capacity

Amplifiers power efficiency



Multi-core fibers

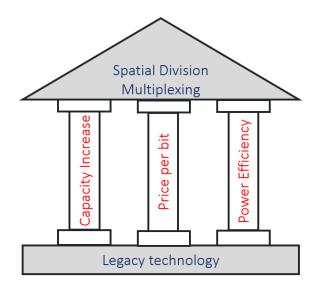
Customer and Industry expectations

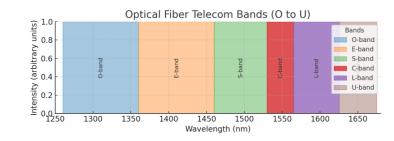
A full set of expectations is expressed by **customers** but also **industry players**

- Limited technical risks
 - Preference for mature technology
- Cost per bit should continue its reduction
 - Higher capacity for a single marine lay operation is automatically reducing cost per bit
 - Disruptive technologies do not mean cost reduction > Costs in our industry are highly driven by volume
- Limited impacts on operations
 - Lay and Recovery operations compatible with current fleet, tools and procedures (repairs and splicing)
- Full compatibility with existing and future transmission gear
 - Some fiber technology would require a significant redesign of transmission equipment, including submerged repeaters:
 - Coupled-core fibers (C-MCF)

Single-Core Fibres – The legacy and the workhorse

SDM Principle: Capacity increase will be generated by additional bandwidth across the submarine cable


Using SMF, this can be achieved by different means:


- More fibers inside the cable:
 - Most mature & widely adopted
 - □ Stable gain flatness, power efficiency & optimized cost/bit
 - Recent systems 12 16 FP keeping convenctional cable size¹
 - 200 μm outer-diameter fibers to enable higher FP numbers: 24 FP²
 - Directly aligned with SDM principles

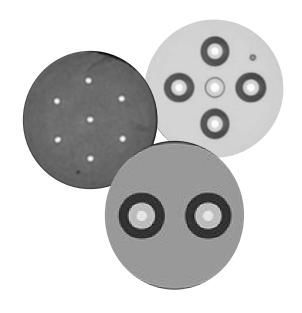
¹Submarine Networks, "ASN Introduces an Innovative Spatial Division Multiplexing Design, SDM1 by ASN," Industry News, July 2019. ²M. Droques, "24FP cable based on 200µm fibres: A new Technical Success," Suboptics 2023

- →2 x usable spectrum higher capacity per FP³
- □ Significant development to bring terrestrial amplifier technology into the submerged plant
- □ Power efficiency, Temperature sensitivity, challenging gain flatness implementation
- No room for more⁴...

M

ASN External Use Copyright ASN – 2025

³TE SubCom, "70.4 Tb/s transmission record using C+L over 7,600 km," Ocean News, 2017.


⁴Ronit Sohanpal et al., "Measurement and Analysis of the Power Consumption of Hybrid-Amplified SCL-band Links,", ECOC 2025, paper W.03.05.6

Multi-Core Fibres – The path to high level Spatial Division Multiplexing

Motivation: single-core fibre capacity is approaching a cable size limitations.

Key aspects for transoceanic transmission:

- Low attenuation
- □ Cladding diameter: Maintained at 125 µm to ensure full compatibility with existing optical fiber infrastructure.
- □ Core count: Typically weakly coupled-core 2–4 cores for scalable mass production, with experimental demonstrations up to coupled-core 19 cores¹-³.
- ☐ Inter-core crosstalk management: Minimization or compensation ?
- ☐ Fan-In Fan-Out devices or integrated bidirectional MC-EDFA⁴?
- → Potential drawbacks
 - Innovative technology
 - New components to be integrated in the wet plant
 - ☐ Industrial tools to be adapted (splicing machine)
 - Complex gain flatness implementation between cores

¹Sumitomo - 2C Z-PLUS Fiber ULL: "Two-core ultra-low-loss fiber with an attenuation of 0.158 dB/km at 1550 nm and an effective area of 112 μm², within a standard 125 μm cladding."

²G. Rademacher *et al.* "Randomly Coupled 19-Core Multi-Core Fiber with Standard Cladding Diameter," in Optical Fiber Communication Conference (OFC) 2023, Technical Digest Series (Optica Publishing Group, 2023), paper Th4A.4

³Lightera - *AllWave FLEX 4X MCF*: "A 4-core rollable ribbon fiber designed for terrestrial and data center interconnects, leveraging spatial division multiplexing (SDM) to multiply capacity."

⁴Hitoshi Takeshita et al., "FIFO-less Bidirectional Core-Pumped 4-core MC-EDFA Featuring with Multicore Isolator / Pump Combiner Hybrids,", ECOC 2025, paper Tu.01.01.3

ASN External Use Copyright ASN – 2025

2025-2028

- 500 Tbps
- 24 Equivalent core-pairs
- 24 FP

2025-2028

- 500 Tbps
- 24 Equivalent core-pairs
- 24 FP

2028-2034

- 1 Pbps
- 48 Equivalent core-pairs
- 2 core MCF 24 FP or C+L 24 FP or 48 FP

2025-2028

- 500 Tbps
- 24 Equivalent core-pairs
- 24 FP

2028-2034

- 1 Pbps
- 48 Equivalent core-pairs
- 2 core MCF 24 FP or C+L 24 FP or 48 FP

2034-2040

- 2 Pbps
- 96 Equivalent core-pairs
- 2 core MCF C+L 24 FP or 2 core MCF 48 FP or 4 core MCF 24 FP MC – EDFA

2025-2028 2028-2034 2034-2040 +2040 • 2 Pbps • 500 Tbps • 1 Pbps • +2 Pbps • 96 Equivalent core-pairs • 24 Equivalent core-pairs • 48 Equivalent core-pairs • +96 Equivalent core-pairs • 2 core MCF C+L 24 FP • 24 FP • 2 core **MCF** 24 FP • 4 core MCF C+L 24 FP or 2 core MCF 48 FP or C+L 24 FP MC – EDFA or 4 core MCF 24 FP or 48 FP or 4 core MCF 48 FP MC – EDFA MC – EDFA or HCF¹?

¹ Yingying Wang, "40 km, 0.052 dB/km and 83 km, 0.076 dB/km in Interstitial-Tube-assisted Hollow-Core Fibre,", ECOC 2025, PDP Th.03.01.1

