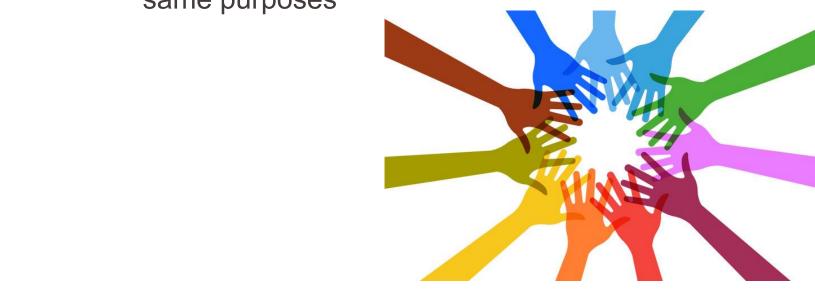




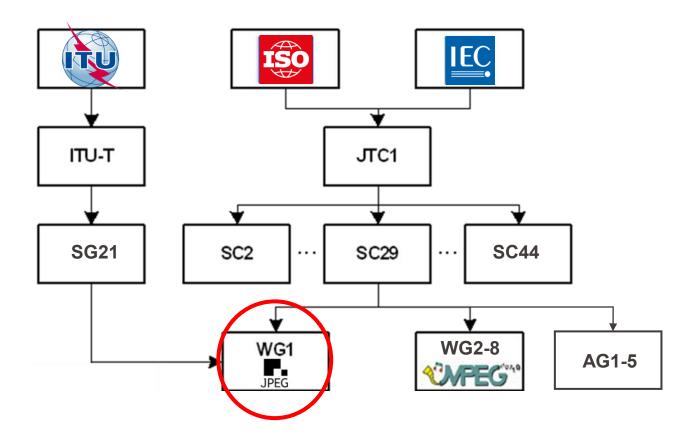



# **Challenges in embodied Al applications**

- Efficient data representation
- Efficient resource management:
  - Bandwidth
  - Complexity
  - Power consumption
- Latency
- Privacy and Security
- Efficient formats
- Performance metrics
- . . .

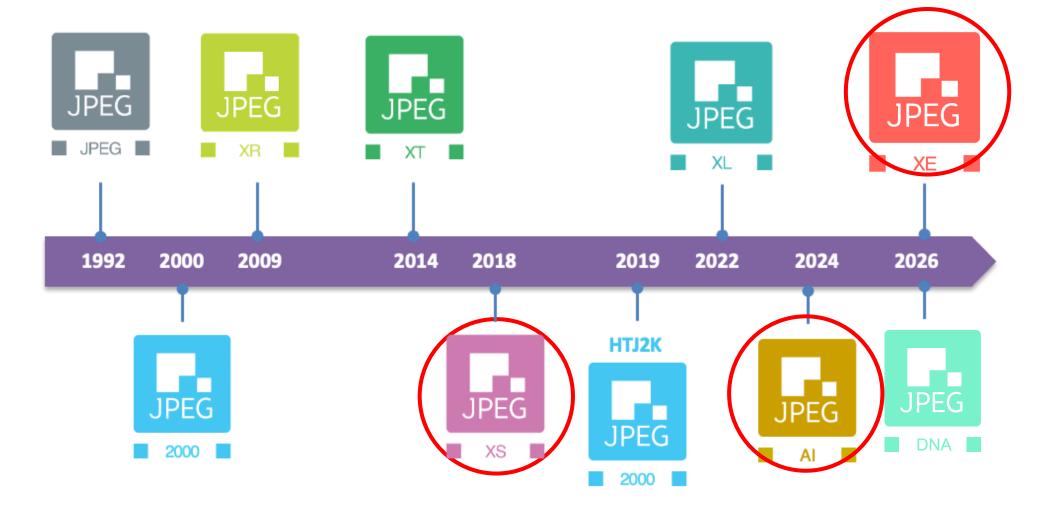






# The most obvious challenge in embodied Al

- Interoperability will play a key role in the success of Embodied Intelligence
  - International Standards, as opposed to proprietary solutions dominated by a few
  - Leveraging existing International Standards, as opposed to re-inventing the wheel

 Joint standardization efforts, as opposed to multiple similar standards for the same purposes




# JPEG's perspective on Embodied AI challenges





# A continuously evolving family of standards



#### **Scope of JPEG XS**



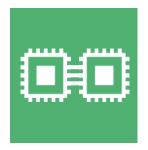
The scope of JPEG XS is to provide a low-latency lightweight image coding system, replacing uncompressed image and video everywhere.

JPEG XS is the first coding standard that offers high-quality contents with REDUCED complexity and ultra-low latency

#### **Applications**






IP Production
Remote production
Remote VAR



Cloud processing Storage, Connectivity



Automotive connectivity



Chip-to-chip interface



Medical



Displays & Mobile



AR/VR HMD Gaming



Wireless (60GhZ, WiFi-6E, 5G)



AV-over-IP KVMs



Digital photography (raw)

EVERYWHERE where uncompressed is the norm



## **Key benefits**





#### Open standard

Series of open standards (ISO 21122-x)

Microsecond latency

Line-based processing (or

even less than a line)



Visually lossless at 1.5 bpp

Additional TDC profiles for screen and desktop content



**Visually** lossless

(for lossless & near-lossless coding)

Constant quality



Any platform

IP-cores & Libraries for CPU, GPU, FPGA, and



power

No external memory, only a few internal SRAMs

all at the cost of baseband HD

HDR capability

**Better quality** 

pixels

More pixels, higher bit

depth, high frame rates,



**Ultra-low** complexity

Low logic & low memory in ASIC or FPGA

Highly parallelizable for CPU & GPU



**ASIC** 



Multi-res handling

Multiple layers of resolution in the compressed domain



**Error** concealment

To packet losses for unpredictable networks (WiFi, 60Ghz, 5G)



**Industry** adoption

Supported by multiple industry standards

# JPEG XS and supporting standards

GenDC



| ITEM                       | DESCRIPTION                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| JPEG XS<br>(ISO/IEC 21122) | -1 : Core coding system                                                                                                                            |
|                            | -2 : Profiles and buffer models                                                                                                                    |
|                            | -3 : Transport and container formats (color, video,)                                                                                               |
|                            | -4 : Conformance testing                                                                                                                           |
|                            | -5 : Reference software                                                                                                                            |
| IETF RTP                   | IETF RFC9134 JPEG XS RTP payload                                                                                                                   |
| ST 2110-22                 | Encapsulation of compressed video in ST 2110 (for Media & ProAV)  VSF TR08 provides recommendations for Intra Facilities, Inter-Facilities & IPMX, |
| TS format                  | MPEG-2 Transport Stream (TS) wrapper for JPEG XS  VSF TR07 provides recommendation for WAN transmission                                            |
| MXF format                 | MXF video file encapsulation (SMPTE ST 2124)                                                                                                       |
| HEIF format                | High Efficiency Image File Format, for storing of mixed image and video content                                                                    |
| JXS format                 | JPEG XS File format, for storing of single images                                                                                                  |
| MP4 format                 | ISO Base Media File format (ISOBMFF), for storing video file                                                                                       |
| NMOS protocol              | AMWA BCP-006-01 v1.0.0 – NMOS with JPEG XS                                                                                                         |
| GenlCam GenDC              | Adds support in GenICam, USB3 Vision, GigE Vision, and many more specifications that rely on                                                       |

#### JPEG Al scope

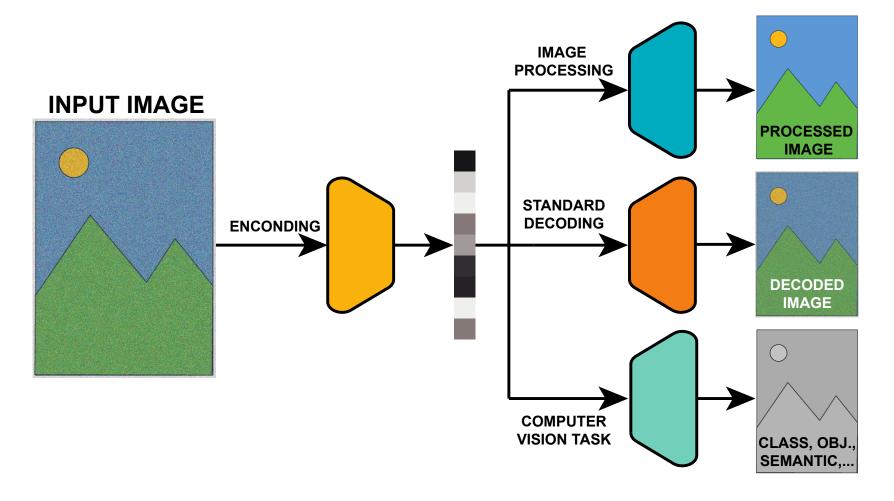


The JPEG AI scope is the creation of a learning-based image coding standard offering a single-stream, compact, compressed domain representation, targeting both human visualization, with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality, as well as effective performance for image processing and computer vision tasks, with the goal of supporting a royalty-free baseline

# The JPEG AI is a joint standardization effort between ISO/IEC JTC1/SC29/WG1 and ITU-T SG21

JPEG AI is the first coding standard that leverages artificial intelligence for superior coding efficiency while taking into account the requirements of AI-powered content processing and analytics




#### Requirements

- High coding efficiency is important for many applications such as cloud storage or media distribution
  - Al-powered architectures have demonstrated to be particularly efficient in coding
- Content understanding is vital for many applications such as visual surveillance, autonomous vehicles, image collection management, etc.
  - Objects may need to be recognized
  - Images may need to be classified for organization purposes
  - Actions or events may need to be recognized
- Content enhancement is desirable in many applications such as in media distribution
  - Noise can be reduced
  - Resolution can be increased
  - Colors can be corrected
- Separate content coding for machines and content coding for humans hinders interoperability and increases complexity in applications that require both
  - Why two codecs when one can do both?
  - In many applications, the same content is consumed by both humans and machines



# JPEG Al triple-purpose framework

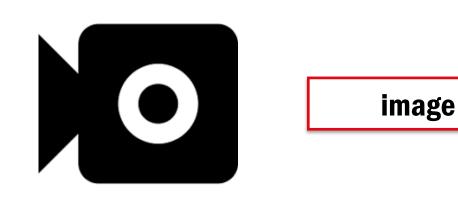


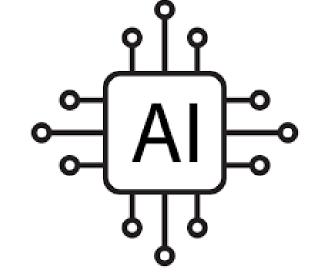


## **JPEG AI strategy**



#### **VERSION 1** (already published)


 Version 1 addresses several (but not all) JPEG Al 'core' and 'desirable' requirements with emphasis on compression efficiency.


#### **VERSION 2** (in progress)

- Version 2 will address/include:
  - JPEG AI requirements not yet addressed in Version 1, e.g. processing and computer vision tasks
  - Significantly improved tools for JPEG AI requirements already addressed in Version 1, e.g. compression efficiency.

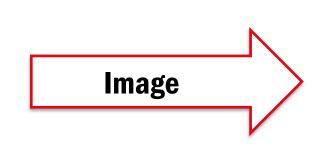
# An observation about today's Al-powered content coding paradigm

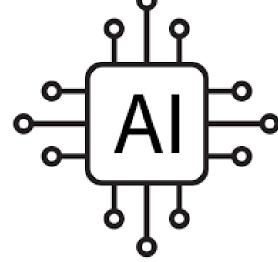






**Not inspired** by biological sensing


Inspired by biological computation (autoencoder and DNN)

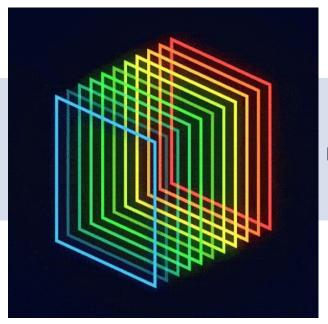



# An observation about today's Al-powered image coding paradigm










Not inspired by biological sensing Inspired

Inspired by biological computation (autoencoder and DNN)



#### **Event sensing**











**EVENT-BASED** 



- 1. Sequential static pictures (frames)
- 2. Clock-driven (pre-defined frame rate)
- 3. Requires minimum exposure time
- 4. Fixed amounts of data in raw format
- 5. Appealing to human consumption

- 1. Continuous events (asynchronous intelligent pixels)
- 2. Scene-driven (1µs time resolution 10'000 fps equivalent)
- 3. Little exposure time (120dB HDR / 40mlux low light sensitivity)
- 4. Amount of data varies with scene dynamics (10x to 1000x less)
- 5. Efficient data for machine vision



## JPEG XE Scope

The scope of JPEG XE is the creation and development of a standard to represent Events in an efficient way allowing interoperability between sensing, storage, and processing, targeting machine vision applications.

The JPEG XE is planned to become a joint standardization effort between ISO/IEC JTC1/SC29/WG1 and ITU-T SG21."

JPEG XE will be the first international standard for coding of events



#### Requirements



- Efficient coding, storage, compression and transmission of event data
  - Better compression
  - Low memory requirements
  - Low power requirements
  - Low end-to-end latency
  - Low complexity
  - Recovery of absolute time-base
  - Interoperability with neural network processing architectures
  - Random access
- Interoperability with major interface specifications and protocols
  - Ease of adoption by industry protocols (DCMI, MIPI, ...)



## **JPEG XE strategy**

- Lossless coding
  - Urgently needed in many of today's use cases
  - Two scenarios
    - Constrained scenario: Extreme low computational complexity, willing to sacrifice compression efficiency (phase 1)
    - Unconstrained scenario: More computational resources, aim for the highest possible compression efficiency (phase 2)
- Lossy coding (phase 3)
  - Desired by many use cases and tasks in the near future
    - Tasks allow assessing the impact of lossy compression.
    - Difficult to assess the impact of loss. Requires dedicated new metrics



#### Last words....

- JPEG has several standards and specifications that are relevant to embodied intelligence applications
- In addition to those mentioned in this talk, other relevant standards and specifications include:
  - JPEG XL
  - JPEG Systems Part 4: Privacy and Security
  - JPEG Systems Part 5: JPEG Universal Metadata Box Format (JUMBF)
  - JPEG Pleno Learning Based Point Cloud Coding
  - JPEG AIC: Assessment of Image Coding











#### **More information**

#### Prof. Touradj Ebrahimi

Multimedia Signal Processing Group (MMSPG) École Polytechnique Fédérale de Lausanne (EPFL)



Touradj.Ebrahimi@epfl.ch



touradj@rayshapersa.ch

