

Robotic Tele-surgery: The Next Frontier in Surgery

Chao He, PhD

Founder, CEO, Shanghai MicroPort MedBot (Group) Co., Ltd.

Director, Shanghai Mini-invasive Surgical Robots Research Center

Value of Tele-Surgery

Great differences in medical levels in different regions

- Difficulties in accessing medical Heavy burden for surgeons care
- High medical expenses

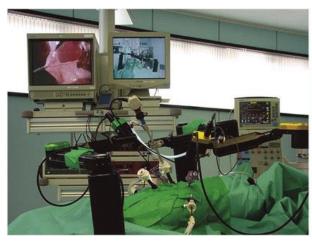
Tele-Surgery is the key technology for addressing the unequal distribution of medical resources.

Number of Class IIIA hospitals in China

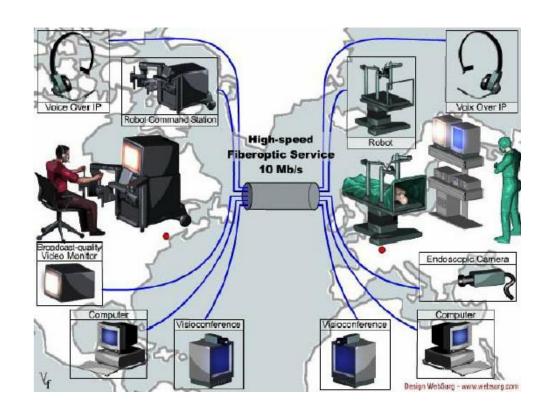
Pioneering Exploration of Tele-surgery

24years ago, 2001, Lindbergh Operation, the world's earliest tele surgery was performed by Prof. Jacques MARESCAUX

Opened the new era of Tele-surgery


Location: France-US

Communication: Undersea Optic Fiber


Robotic system: **ZEUS**

Distance: 7000km+

Latency: ≥310ms

Build the theory of "2nd generation Tele-surgery"

Technical

advancement

Establish connectivity for tele-surgery

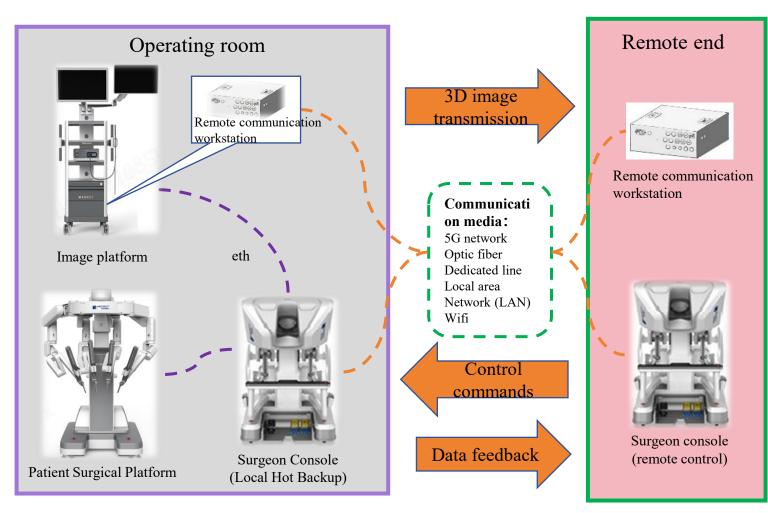
1st Generation tele-surgery

- Dedicated lines, optical fibers
- Point to Point connection
- Rely on specific suppliers for quality
- Long deployment cycles and high costs

Accelerate the development and maturation of tele-surgery

- Compatible for multiple networks
- Establish a surgical network
- Explore the possibility of greater distances
- Facilitate large-scale application

Establish the technical foundation for large-scale clinical applications



Configuration of MedBot Tele-surgery system

Technical principles

- Original master-slave control method remain unchanged
- Operations performed are transmitted over the network
- Compatible for hospital existing networks
- Dural surgeon consoles, Local hot backup
- Local console share the highest control right

Features of Medbot Tele-surgery system

Ultra-low latency

End-to-end latency

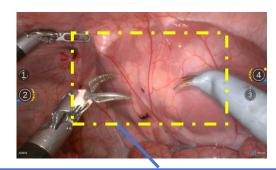
<200ms

- Ultra-low latency image encoding and decoding
- Lowest master-slave control latency

Multi-network fusion

Compatibility with current infrastructure of hospitals

- 4G/5G/Dedicated Line/Internet
- ☐ China Mobile /China Unicom/ China Telecom

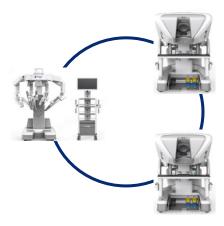

200ms Tele2 (Russia)

Low network requirements

Bandwidth requirement as low as 1.25Mbps

- Dynamic adaptive algorithm
- Lossless high compression ratio image encoding and decoding algorithm

Quality assurance of hotspots.


Systematic safety assurance strategy

Dual-end hot standby

Pioneering in the industry

Zero-second switching

☐ Zero-second dynamic uninterrupted switching



Data encryption

Full data high-intensity encryption

Fearless of network security risks

- Real-time encryption of communication data
- Local data encryption backup

Real-time monitoring

Real-time monitoring and handling

of network status

- ☐ High-frequency monitoring with a cycle as low as 2ms
- The most secure network anomaly handling

Network monitoring

Security mode

1st Tele-surgery of Toumai

World's 1st ultra-long-distance 5G Tele-surgery

1st tele-surgical case: performing an ultra-long-distance surgery over 5000km

Location: Shanghai-xinjiang

Communication: 5G

Robotic system: **Toumai**

Distance: 5000+km

Latency: ≥220ms

Procedures: **Decapitating renal cyst**

1st 100+ tele-surgery cases study

- Long distance: spanning over 5000 kilometers
- Wide range of procedures : 70+ 3nd and 4th level surgeries
- Broad range of indications
- Multiple consecutive surgeries: 20+ times

Numerous global first in complex tele-surgeries:

Radical gastrectomy for gastric cancer

Liver resection

Radical prostatectomy for prostate cancer

Hysterectomy

Pancreatectomy

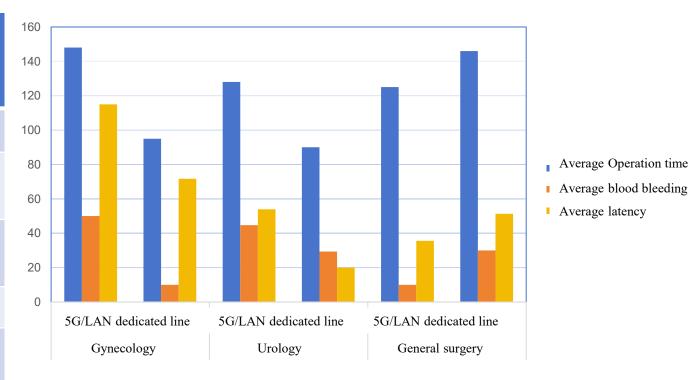
Radical nephrectomy for renal tumor

Bariatric/metabolic surgery for weight loss

Pediatric remote surgery

High-altitude remote surgery

Study Design	Prospective / Simple Arm / Multicenter		
Sample Size	100+		
Indications	Urology 32 General surgery 61% Gynecology 7%		
Networking mode	5G network Cable Dedicated Line Internet		



Tele-surgery clinical study data analysis

Distance	Network	Average delay (ms)	Maximum delay (ms)
~5000km	5G/LAN	159.88	488.37
~5000km	Dedicated line	73.38	1041.81
1000- 2000km	5G/LAN	52.99	247.85
<200km	5G/LAN	41.97	591
<200km	Dedicated line	24.16	151.24

Clinical results

5 Years journey of

- "Arduous and in depth" Technological development
- "Exciting but cautious" Clinical exploration

Tele-surgery has reached the critical point of breakthrough!

400+ Cases World's 1st on human

100% Surgical Success Rate 25+
World Records

50+ Cities

80+ Hospitals

1000,000+ km Communication Distance*

Europe's First Telesurgery

Africa's First Telesurgery

Date: Sep 03, 2024

- Main Surgeon: Dr. Marcio
 Main Surgeon: Dr. Alex Mottrie,
 Moschovas
 Dr. Geert De Naeyer
 - Date: May 26, 2025

- World's Highest-volumeTelesurgery 8 cases
- > Main Surgeon: Dr Saad Aldousari
 - Date: May 20, 2025

- Africa's First ClinicalTelesurgery
- Main Surgeon: Dr. Vipul Patel
- Date: Oct 23, 2024

World's Longest Clinical Telesurgery

- Main Surgeon: Dr. Youness Ahallal
- Date: Nov 16, 2024

1st Tele-Surgery in Angola

6 Robotic-Assisted Laparoscopic Radical Prostatectomy, 2 of the cases were performed remotely using Toumai™'s telesurgery capability

Remote Control (Training) Room


One-way latency **7ms**

Operating Room

hospital's internal telecom network

"My team came here to Angola to help the country for a great humanitarian purpose. The potential of robotics, telesurgery and education is the future of healthcare equity for countries such as Angola."

"By being able to operate remotely we have demonstrated for the first time in Africa the potential route for future humanitarian success. Today was proof of concept with our entire team here, we must proceed with caution and safety in the future."

Dr. Vipul Patel President of Society of Robotic Surgery, completed 19,000 robotic surgeries.

Historical 1st FDA-approved IDE tele-surgery clinical trial

From Orlando, USA to Luanda, Angola

- To enable world-class surgeons to perform complex procedures remotely in underserved regions like Africa
- The 17,000km* tele-surgery (85min, Prostatectomy) sets a new real-world benchmark
- Beyond single operations, tele-training empowered
 African surgeons to master robotic surgery, creating local healthcare capacity

The Longest Tele-surgery record of the world

Casablanca Morocco

MEDBOT"

Two-way communication distance:

More than 30,000 Km

Straight-line distance 12,000 Km

Shanghai China

On-human Telesurgery Procedure: Robotic-Assisted Laparoscopic

Radical Prostatectomy

Time: 2024. 11.16

Main Surgeon: Dr. Youness Ahallal

Dr. Youness stressed:

"Although it was the first time to conduct a telesurgery using the Toumai robot and the distance was so far, I could still clearly sense the flexibility, precision, and stability of the Toumai robot."

Promote the development of standards and regulatory systems

2025.04

Regulatory Approved by NMPA

National Standard & Guidelines

2024.12

FDA IDE-approved human trial

2025.06

World's 1st Regulatory approved tele-surgery system!

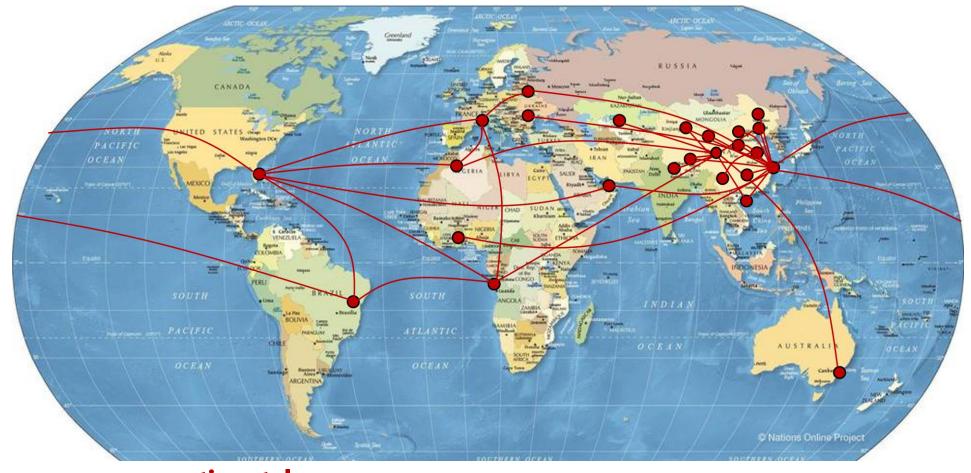
Advancing Academic Research to Promote Tele-surgery Development

National Telesurgery
Standard&Guidelines
Drafted by MedBot

Expanding Surgical Frontiers Across the Pacific Ocean: Insights from

1 / 9 @ O



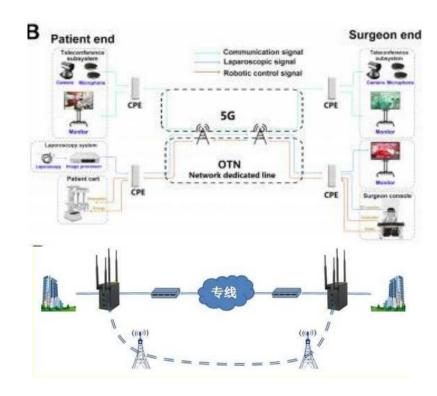


Academic Papers Published by Global Medical Experts on ToumaiTM
Telesurgery

The most ambitious plan: Establish a global three-layers Tele-surgery network

Establish a **cross-continental** telesurgery network, realize Tele-training and guidance, explore the normalization of cross-continental robotic telesurgery, and promote the maturity of telesurgery technology

"Ground-Ocean-Space" Integrated Tele-Surgery System


Domestic
Laying of dedicated fiber optic lines

Cross-continental
Use of submarine fibre cables
and signal base stations

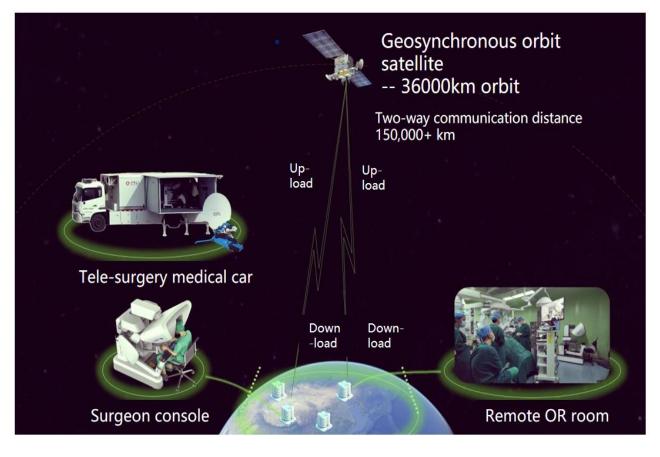
Space
Use of satellite links to space stations

Satellites communication: From high-orbiting to low-orbiting

2025.01: 1st satellite tele-surgery of the world (High orbit)

From Lhasa to Beijing

2 Robotic-Assisted Laparoscopic Hepatectomy



Remote Control (Training) Room

Earth-orbiting satellites

36,000km near ground level

Operating Room

Satellites communication: From high-orbiting to low-orbiting

2025.07: the 1st Low Orbit satellite tele-surgery of the world

Beijing – Xiongan, 105km

2 Robotic-Assisted Laparoscopic Hepatectomy

Delay: ≤100 ms

Operating time: 16 mins & 72 mins

THANK YOU FOR YOUR ATTENTION

Linkedin:

@MicroPort MedBot

x: @MedBot

Facebook: @MicroPort MedBot

Youtube: @MicroPort MedBot Join MicroPort® MedBot™ on our official website and social media

