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Scope

Health Education Manufacturing Agriculture

Environment Security

Finance Transport
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Why do we care?



Household Robots Market Size

USD22.468B

USD 8.55 B

2024 2029

Source : Mordor Intelligence A (N

Source: https://www.mordorintelligence.com/industry-reports/household-robots-market
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Household Robots Market Size

MARKET SIZE IN BILLIONS

2033 $95,10
2023 RN

Source: https://www.factmr.com/report/household-robot-market
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So

P

Robots along side humans

Trust

Liabilities

Mitigate technical failures & bias
Unstructured environment
Need high level intelligence

“Supervised” learning



Proposal
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ISION &
ROBOTICS
LAB

Mohammad Kassem Zein, Serge Moughabghab, Mohammad Haj Hussein,
Batool Ibrahim, and Dr. Daniel Asmar
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Serge Mghabghab, Imad H. Elhajj, Daniel Asmar, “Adaptive Gain Tuning for Teleoperation of Quadrotors,” IEEE International
Multidisciplinary Conference on Engineering Technology, Beirut, Lebanon, 2-4 November 2016.



Autocomplete
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Mohammad Haj Hussein, Imad Elhajj and Daniel Asmar, “Personalized Autocomplete Teleoperation: Real-Time User Adaptation using Transfer
Learning with Partial Feedback,” IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Jiaxing,

China, July 27-31, 2021.

Mohammad Kassem Zein, Majd Al Aawar, Daniel Asmar and Imad Elhajj, “Deep Learning and Mixed Reality to Autocomplete Teleoperation,”
IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, May 30 - June 5, 2021.
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3D Autocomplete

Batool Ibrahim, Mohammad Haj Hussein, Imad H. Elhajj, Daniel Asmar, “Autocomplete of 3D Motions for UAV Teleoperation,” IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Detroit, Michigan, USA, October 1-5, 2023.

Batool Ibrahim, Imad H. Elhajj, Daniel Asmar, “3D Autocomplete: Enhancing UAV Teleoperation with Al in the Loop,” IEEE International
Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 13-17, 2024.
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Quantitative Results

Average time

Average distance

Average smoothness

35% less time to
complete a task

30% reduction in
distance travelled

(s) (m) (rad)
Manual Auto Manual Auto Manual Auto
Cylinders |  39.1 25.1 29.6 20.7 6450 3134
Cones . 36.6 23.9 30.6 20.6 5010 2920
Boxes | | 36.7 22.5 27.4 16.5 6137 3126
- N - ) - )

50% improvement
in trajectory
smoothness
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Human-Aided Online Terrain Classification for Bipedal Robots Using AR
Zahraa Awad, Celine Chibani, and Dr. Noel Maalouf
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International Conference on Robotics and Biomimetics (ROBIO), Xishuangbanna, China, December 5-9, 2022.
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ad, Celine Chibani, Noel Maalouf, Imad Elhajj, “Human-Aided Online Terrain Classification for Bipedal Robots Using Augmented Reality,” IEEE
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Human Aided Digital Twins
Dr. Daniel Asmar

Karim Yassine, Malak Sayour, Adam Manasfi, Maya Hachach, Nadim Dib, Imad Elhajj, Elie Khoury, Boulos Asmar, Daniel Asmar, “Human-Robot Collaborative SLAM-XR,”

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hangzhou, China, 19 — 25 October, 2025.
Malak Sayour, Mohammad Karim Yassine, Nadim Dib, Imad H. Elhajj, Boulos Asmar, Elie Khoury, Daniel Asmar “HAC-SLAM: Human Assisted Collaborative 3D-SLAM

Through Augmented Reality,” IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 13-17, 2024
Abbas Sidaoui, Imad H. Elhajj, Daniel Asmar, “Collaborative Human Augmented Mapping,” IEEE/RSJ International Conference on Intelligent Robots and Systems,

Macau, China, November 4-8, 2019.



XR Agent and Human-in-the-Loop Features

* Voxel grid mapping
« Automatic labeler (6D pose)
* Agent localization

Automatic labeling of a robot

 Path visualization and editing
* Asset Injection

Robot 1 Map - LIDAR Hololens Map

Path visualization
Global Fused Map



Real-Time Digital Twin Update
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6D object pose estimation model




6D object pose estimation model pipeline

b K Unity ) GIOP

Prepare 3D Train object pose Input the trained model Deploy to XR
CAD or scan estimation model into Unity to trigger device
of an object on the file events upon detection
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Experiment Objective Results

Quantity Mean Std

Time (sec)  358.78 18.12
Position (m) 0.052 0.037
Angle (deg) 0.710 0.339

Descriptive analysis for completion
time, position, and angular errors
from 37 users

Experimental setup in the industrial environment. (a) Full view of the setup. (b)
QR anchor utilized by the XR system for localization. (c—e) The three dollies
used in the experiments.



Experiment Subjective Results

NASA-TLX Subscale Comparison

15.0 4

Metric Mean Std 8 ]

Mental 4.00 2.65 £ 100"

Physical 4.62 3.75 =

Temporal 3.84 3.17 P 7

Performance 17.43 3.50 2 501

Effort 3.486 2.231 5 25

Frustration 292 236 2 0o

Total 30.25 8.04 |
Descriptive analysis for NASA-TLX
subscale and composite scores from NASA-TLX subscale ratings across all 37 participants, illustrating perceived
participants. workload in terms of mental demand, physical demand, temporal demand,

performance, effort, and frustration.



Diminished Reality
Salam Tabet and Dr. Ayman Kayssi
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Original Snap—Back Adaptive

Salam Tabet, Ayman Kayssi and Imad H. Elhajj, “Mobile Diminished Reality for
Preserving 3D Visual Privacy,” International Conference on Intelligent
Metaverse Technologies & Applications (iMETA), Tartu, Estonia, 18-20
September 2023. Original

Salam Tabet, Ayman Kayssi and Imad H. Elhajj, “Utility-Privacy Aware Mobile ] . -
Diminished Reality Framework for 3D Visual Privacy,” IEEE International _
Conference on Trust, Privacy and Security in Intelligent Systems, and
Applications (TPS), Washington, D.C., USA, 28-30 October 2024.

Snap—Back Adaptive
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Salam Tabet, Ayman Kayssi, Imad H. Elhajj, “Al-Enhanced Mobile Diminished Reality Framework for Preserving 3D Visual Privacy,”
International Conference on Intelligent Metaverse Technologies & Applications (iMETA), Dubai, UAE, 26-29 November 2024.



Beyond Robotics: Al Powered Oil Detection and
Thickness Estimation Sensors
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Mahmoud Altrabolsi, Mahdi Saleh, Imad H. Elhajj, Daniel Asmar, “A Planar Capacitive Sensor for Detecting and Measuring Thickness and Depth of Oil Under
Ice,” Measurement Science and Technology, Volume 36, Number 1, 2025. 10.1088/1361-6501/ad99¢ee

Mahdi Saleh, Ali Rida Tabikh, Imad H. Elhajj, Kristi McKinney, Daniel Asmar, "Dual-Modality Capacitive-Ultrasonic Sensing for Measuring Floating Oil Spill
Thickness" IEEE Transactions on Instrumentation & Measurement, Vol.71, 2022. 10.1109/TIM.2022.3212108

Mahdi Saleh, Ghassan Oueidat, Imad H. Elhajj, and Daniel Asmar, “In-situ Measurement of Oil Slick Thickness,” IEEE Transactions on Instrumentation and
Measurement, Vol. 68, No. 7, pp. 2635-2647, July 2019. DOI: 10.1109/TIM.2018.2866745






Current Questions

@ Physics (Knowledge) %ﬁ EE;“an Factors & Human

Q Context o UM



Human
Behavior

How to test?

Cultural differences?

* Personal preferences?

Explainable?







Key
Takeaways

There is significant
potential for humans, Al
and “Physics” sharing
the loop

Does not compete with
autonomy

Might be the bridge
needed to market
acceptance

Similar good old
challenges
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