

AI-based rainfall forecasts for Early Warnings over the Greater Horn of Africa

SHRUTI NATH, F. Cooper, D. Macleod, M. Gudoshava, A. Amdihun, N. Kalladath, J. Kinyua, H. Kimani, D. Koros, Z. Mwai, A. Teshome, I. Obai, J. Mason, M. Chantry, F. Pappenberger, A. Weisheimer, T. Palmer

Resilience to Natural Hazards through AI solutions, Session 2: AI models, methods and added value for tracking and forecasting | 08.05.2025

Objectives

Exploring the **potential of cloud-optimized AI** based approaches to improve accuracy of **operational rainfall forecasts** and provide better **early warnings** over the **Greater Horn of Africa**

Mainly talk about journey towards evaluating **value added**

End-to-end early warning generation

Constants (LSM, orography)

Taking a step back

Constants (LSM, orography)

cGAN

•

Criteria for method:

- Retains latent representation of underlying distribution
- Calibrated on scores that cannot be • hedged (proper scores)
- Allows easy scanning of the • economic value added under different cost-loss ratios

Additional task-specific distillation step for userdefined thresholds

Jack of all thresholds: Brier score optimized over continuum of thresholds

Master of a few

Cost-loss ratios?

	Event doesn't happen	Event happens
No preparation made	0	L
Preparation made	С	С

Economic value of:

• Our forecast:

 $E = (TP + FP) \cdot C + FN \cdot L$

- The default i.e. best out of always or never acting $E_{clim} = \min\{(TP + FN) \cdot L, C\}$
- A perfect forecast:

$$E_{perfect} = (TP + FN) \cdot C$$

At each C/L ratio, the relative economic value can be quantified:

$$REV\left(\frac{C}{L}\right) = \frac{E_{clim} - E}{E_{clim} - E_{perfect}}$$

 \rightarrow Well-calibrated p means we can set p=c/L!

Proposed framework

2. Estimation of the underlying distribution

3. Logistic Regression on observational data

Expected risk of:

- Low
- Moderate
- Heavy
- Severe

rainfall events

Urban flooding, personal camera, 22.04.2024

Economic value of forecast probabilities obtained

Calibration on individual rain gauge data

cGAN is betting on wetter periods

- IFS tries to give more precise probabilities
- WRF also shows **elevated rainfall** over period

 Precisely pinpointing exact time of heavy rain may be tricky for convective active periods → probabilities are important!

Summary

- Operational value of probabilistic (AI) forecasts demonstrated by translation to "yes/no triggers" based on event-specific probability thresholds chosen via cost-loss frameworks
- Going from probabilistic forecasts to triggers requires mapping from the true underlying distribution to well-calibrated probabilities of threshold exceedance
- Al-generated, low-cost large ensembles can provide better calibrated probabilities

Contact me: shruti.nath@physics.ox.ac.uk