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HEATWAVE DRIVERS AND IMPACTS: COMPLEX AND OVERLAPPING
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THE STATE OF THE ART OF FORECASTING 2) Skill (RMSE): 2500
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THE STATE OF THE ART OF FORECASTING

The current state-of-the-art of dynamical seasonal
forecasting

b) SEASS: N90 15MJJA

B Coocrics

c) SEAS5: HWMI 15MJJA
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! Change Service

Extension of data-driven approaches to the
subseasonal-to-seasonal timescales (and beyond).
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METHOD: FEATURE SELECTION ERAS reanalysis data (1940-2022)

Key Components

NDQ90

T T T T T
1940 1960 1980 2000 2020

«  Multi-Method Ensemble Optimisation
Algorithm

« Use of long-term paleo-simulation to boost
training

- Target: number of summer
heatwave days

« Potential predictors:
atmospheric, ocean, land and
sea ice variables

- Dimensionality-reduction: k-

i means clustering

(budding or fragmentation)

m‘“ B e AIM
g |dentifying optimal combination of
Salcedo-Sanz et al. 2014; 2017; predictors for forecasting heatwaves
Perez Aracil et al, 2023. months in advance




KEY OUTPUT: PREDICTORS OF SUMMERTIME HEATWAVE INDICES

What are the selected features/predictors?
European-wide view of “best” solutions and lag-times

European “VIPs”

variables:
e Local

temperature and
atm. circulation

* March soil
moisture

* March-April
ENSO
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KEY OUTPUT: SKILLFUL DATA-DRIVEN FORECASTS

a) Data-Driven b) Dynamical Multi-Model

60°N f

From simulation to “real” (ERAS5)

predictors EJ

* Correlation score - number of HW  40°n
days over summer - 1993-2016 -
against ERA5

*  Number of HW days May-July

* |nitialized in May

* Data-driven, trained on 1850 years
of past2k

* Dynamical multi-model ensemble
mean from C3S
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FUTURE STEPS

Scientific follow-up: first-step in
understanding mechanisms for newly-
identified predictors

Expansion to global domain

Further refining of first prototype: different \
training sets, more predictors \

Use in ML for Climate Science training

(e.g. SCEWERO project with Babes-Bolyai

University, Cluj, Romania)

A sub-seasonal version eligible for Al
WeatherQuest competition (by adjusting
lag times of predictors and target

b 4

variables)
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POTENTIAL IMPACT

Index-specific forecasting: why forecast the whole
atmosphere when certain case-studies/stakeholders
needs very specific information?

Operationalisation: multi-month, cloud-based
forecasting of heatwaves

Training: Open-access code for use in ML for
Climate Science training (e.g. SCEWERO project
with university of Cluj, Romania)

Scientific relevance: first-step in understanding
mechanisms for newly-identified predictors
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1. Set-up

Target: summer HW days (NDQ90) 5.
Dimensionality-reduction of predictors

Paleo-simulation

2. Feature Selection
|dentifying predictors of

_— ying p

summer HW indices

ERA5
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Input predictors into
range of ML models
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METHOD: Long-term training data

Leveraging a 2000-year climate

simulation

MPI-ESM “Past?k” - Climate 801 ERAS5 reanalysis data (1940-2022)
reconstruction of 0-1850 60 -

(Jungclaus et al, 2017) g

Atmosphere: ECHAMG6 7

(1875 deg, 47 vertical levels) 0 " v _— — —
Ocean/Sea Ice: MPIOM _
(1.5 deg, 40 vertical levels) %71 Past2k model data (0-1850)
Reconstructions of land-cover, 2 H‘

volcanic aerosols, solar forcings I\ ' “ /. N

(with artificial 11 year cycle) and 1A "' vf \ 'N "& |

monthly average ozone 0 "'

concentrations.
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METHOD: Potential predictors

Statistical and ML-based forecasts reduce the dimensionality of problem by using pre-
defined area-averages/PCs/clusters as inputs..can we select the most useful ones?

2m temperature (TZM) Europe K-med ns Spdi‘ldl Clusll'ering Sea Ice Concentration - Arctic
of daily ERA5 data

Time series of average

sl st () SUIEE anomalies (w.r.t 1981-2010).

Geopotential Height 500hPa (Z500) | Europe

Mean Sea Level Pressure (MSLP) Europe
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METHOD: Coral reef optimisation algorithm

Zif! Pool of potential predictors:
b, — o] restoieaaton Jo— HI¥ Cluster selection = [0,1]
T ITIJ'. Time lag of each cluster = [0,26] weeks
% F, o[ Broadcastspawing | Sequence length of each cluster = [1,4] weeks
+

Sexual crossover
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Larvae setting

I trained on selected solutions

Asexual reproduction
(budding or fragmentation)
Ej '
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1'Fb —> Brooding

Depredation

Optimization of 3 solution values based
on skill (e.g. normaised root mean
squared error - NRMSE)

Target: number of HW days (May-July) Salcedo-Sanz et al, 2014; 2017: -
Potential predictors: up to 6 months prior to May 1st Aracil Perez et al. '2023.' '

Yes
m & The solution is given by the best
coral existing in the reef




RESULTS: Optimal skill in model-world

Training period cross-validation
0-1600
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RESULTS: MACHINE LEARNING MODELS

From simulation to “real” (ERA5)

predictors £J

* Correlation score - number of HW
days over summer - 1993-2016 -
against ERA5S

* Number of HW days May-July

* Initialized in May

* Data-driven, trained on 1850 years
of past2k.

Comparing different ML models -

which is the best?

Linear Regression - LR

Support Vector - SV

Decision Tree - DT

Random Forest - RF

K Nearest Neighbour - KN

Ada Boost - AB s skill
Trpﬁj CLINT Multi-Layer Perceptron Pl RSN .. (% area with
e e Light Gradient Boost - LGB significant skill)

0:5 Black stippling
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SUMMARY

1.

)

Development of (Coral Reef) optimization-based feature selection of HW
drivers; adapted from (Perez-Aracil et al, 2025; in review)

Training with millennial-scale paleo-climate - transferable to “real-world” ->
identification of predictors of extreme summers.

Significant skill of summer HW propensity over large parts of Europe -
competing with/matching dynamical state-of-the-art.

Potential improvement to corridor of low skill over northern Europe to
Scandinavia.

Ongoing work: data-driven seasonal forecast system currently undergoing
benchmarking/sensitivity analysis (McAdam et al,; in review) : including deep
learning models, SHAP analysis...

CLINT




N
N

METHOD: Validation set-up

N
o

=
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1. Selection of potential predictors.

iy

Weeks to initialisation
N

100

3. Training in model world (0-1850) - Testing N
in real world (1993-2016, ERAS5) : |
Can we transfer learning to the real world? -
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RESULTS: Optimising data-driven forecasts (example over greece)

Evolution of optimal combination of

predictors (minimum N-RMSE) . . o
Heatmap” of optimal solutions (“best”)
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RESULTS: Forecasts

Evolution of optimal combination of

predictors (minimum N-RMSE) ) . o
Heatmap” of optimal solutions ("best”)
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