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THE STATE OF THE ART OF FORECASTING

The dawn (and fast rise) of data-driven weather 
forecasting.

Learning 
skillful medium-
range global 
weather 
forecasting. 
Lam et al., 2021

Do data-driven models beat numerical models in forecasting 
weather extremes? A comparison of IFS HRES, Pangu-
Weather, and GraphCast. Olivetti & Messori, 2024

A computationally-
efficient alternative 
which can outperform 
dynamical systems…but 
not always!



THE STATE OF THE ART OF FORECASTING

The current state-of-the-art of dynamical seasonal 
forecasting 

Seasonal prediction of European 
summer heatwaves. Prodhomme et al., 2021.

Extension of data-driven approaches to the 
subseasonal-to-seasonal timescales (and beyond).
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METHOD: FEATURE SELECTION

Key Components

• Multi-Method Ensemble Optimisation 
Algorithm 

• Use of long-term paleo-simulation to boost 
training

ERA5 reanalysis data (1940-2022)

Paleo-simulation data (0-1850)

• Target: number of summer 
heatwave days

• Potential predictors: 
atmospheric, ocean, land and 
sea ice variables 

• Dimensionality-reduction: k-
means clustering

AIM
Identifying optimal combination of 

predictors for forecasting heatwaves 
months in advance

Salcedo-Sanz et al, 2014; 2017; 
Perez Aracil et al., 2023.



KEY OUTPUT: PREDICTORS OF SUMMERTIME HEATWAVE INDICES

What are the selected features/predictors? 
European-wide view of “best” solutions and lag-times

European “VIPs” 
variables:
• Local 

temperature and 
atm. circulation

• March soil 
moisture

• March-April 
ENSO



KEY OUTPUT: SKILLFUL DATA-DRIVEN FORECASTS

From simulation to “real” (ERA5) 
predictors 
• Correlation score – number of HW 

days over summer - 1993-2016 –
against ERA5

• Number of HW days May-July
• Initialized in May 
• Data-driven, trained on 1850 years 

of past2k
• Dynamical multi-model ensemble 

mean from C3S
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FUTURE STEPS

Expansion to global domain

A sub-seasonal version eligible for AI 
WeatherQuest competition (by adjusting 
lag times of predictors and target 
variables)

Use in ML for Climate Science training 
(e.g. SCEWERO project with Babes-Bolyai
University, Cluj, Romania) 

Scientific follow-up: first-step in 
understanding mechanisms for newly-
identified predictors

Further refining of first prototype: different 
training sets, more predictors 
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POTENTIAL IMPACT

Index-specific forecasting: why forecast the whole 
atmosphere when certain case-studies/stakeholders 

needs very specific information? 

Training: Open-access code for use in ML for 
Climate Science training (e.g. SCEWERO project 

with university of Cluj, Romania) 

Scientific relevance: first-step in understanding 
mechanisms for newly-identified predictors

Operationalisation: multi-month, cloud-based 
forecasting of heatwaves 
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2. Feature Selection
Identifying predictors of 

summer HW indices 

3. Prediction 
Input predictors into 
range of ML models

1. Set-up
Target: summer HW days (NDQ90)
Dimensionality-reduction of predictors

Paleo-simulation

ERA5



METHOD: Long-term training data

Leveraging a 2000-year climate 
simulation

MPI-ESM “Past2k” - Climate 
reconstruction of 0-1850 
(Jungclaus et al., 2017)

Atmosphere: ECHAM6 
(1.875 deg, 47 vertical levels)
Ocean/Sea Ice: MPIOM 
(1.5 deg, 40 vertical levels)

Reconstructions of land-cover, 
volcanic aerosols, solar forcings 
(with artificial 11 year cycle) and 
monthly average ozone 
concentrations.

ERA5 reanalysis data (1940-2022)

Past2k model data (0-1850)



METHOD: Potential predictors

Variable Region

2m temperature (T2M) Europe

Mean Sea Level Pressure (MSLP) Europe

Soil Moisture (SM) Europe

Geopotential Height 500hPa (Z500) Europe

Total Precipitation (TP) Europe

Outgoing Longwave Radiation 
(OLR)

North Atlantic

Sea Surface Temperature (SST) North Atlantic

Sea Ice Content Arctic

MSLP Global

Z500 Global

SST Global

OLR Global

K-means spatial clustering 
of daily ERA5 data
Time series of average 
anomalies (w.r.t 1981-2010).

Statistical and ML-based forecasts reduce the dimensionality of problem by using pre-
defined area-averages/PCs/clusters as inputs…can we select the most useful ones?



METHOD: Coral reef optimisation algorithm

Pool of potential predictors:
Cluster selection→ [0,1]

Time lag of each cluster→ [0,26] weeks
Sequence length of each cluster→ [1,4] weeks

Optimization of 3 solution values based
on skill (e.g. normaised root mean 

squared error - NRMSE)

Salcedo-Sanz et al, 2014; 2017; 
Aracil Perez et al., 2023.

Each evaluation: Linear Regression
trained on selected solutions

Target: number of HW days (May-July)
Potential predictors: up to 6 months prior to May 1st



RESULTS: Optimal skill in model-world

Training period cross-validation 
0-1600

Test period 
1601-1850

In other words, how well can we 
recreate model world summer 
extremes using early information?

The next question is…how 
transferable is this 
training/learning to the real 
world?



RESULTS: MACHINE LEARNING MODELS

From simulation to “real” (ERA5) 
predictors 
• Correlation score – number of HW 

days over summer - 1993-2016 –
against ERA5

• Number of HW days May-July
• Initialized in May 
• Data-driven, trained on 1850 years 

of past2k.

Comparing different ML models –
which is the best?
Linear Regression - LR
Support Vector  - SV
Decision Tree – DT
Random Forest – RF
K Nearest Neighbour – KN
Ada Boost – AB
Multi-Layer Perceptron
Light Gradient Boost - LGB

Black stippling 
– significance 
skill 
(% area with 
significant skill)



SUMMARY

1. Development of (Coral Reef) optimization-based feature selection of HW 
drivers; adapted from (Perez-Aracil et al., 2025; in review)

2. Training with millennial-scale paleo-climate – transferable to “real-world” -> 
identification of predictors of extreme summers.

3. Significant skill of summer HW propensity over large parts of Europe –
competing with/matching dynamical state-of-the-art.

4. Potential improvement to corridor of low skill over northern Europe to 
Scandinavia.

5. Ongoing work: data-driven seasonal forecast system currently undergoing 
benchmarking/sensitivity analysis (McAdam et al.; in review) : including deep 
learning models, SHAP analysis…



METHOD: Validation set-up

1. Selection of potential predictors. 

2. Training in model world (0-1600) – Testing 
in model world (1600-1850)
Can reduced dimensionality approach recreate 
HW index?

3. Training in model world (0-1850) – Testing 
in real world (1993-2016, ERA5)
Can we transfer learning to the real world?



RESULTS: Optimising data-driven forecasts (example over greece)

Evolution of optimal combination of 
predictors (minimum N-RMSE)

“Heatmap” of optimal solutions (“best”)



RESULTS: Forecasts

Evolution of optimal combination of 
predictors (minimum N-RMSE)

“Heatmap” of optimal solutions (“best”)
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