

FEATURE SELECTION FOR SEASONAL FORECASTING OF EUROPEAN SUMMER HEATWAVES

Ronan McAdam

Junior Scientist, Foundation CMCC – Euro-Mediterranean Centre on Climate Change, Italy

Workshop on "Resilience to Natural Hazards through AI solutions" Session 3: AI for last-mile communication

- 1) Background: State-of-the-art in forecasting extremes
- 2) The Prototype: methods and key results
- 3) Future Steps
- 4) Potential Impact

1) Background: State-of-the-art in forecasting extremes

- 2) The Prototype: methods and key results
- 3) Future Steps
- 4) Potential Impact

HEATWAVE DRIVERS AND IMPACTS: COMPLEX AND OVERLAPPING

THE STATE OF THE ART OF FORECASTING

The dawn (and fast rise) of data-driven weather forecasting.

A computationallyefficient alternative which can outperform dynamical systems...but not always!

RMSE scorecard for 1% most extreme data points

Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast. Olivetti & Messori, 2024

THE STATE OF THE ART OF FORECASTING

The current state-of-the-art of dynamical seasonal forecasting

Seasonal prediction of European summer heatwaves. Prodhomme et al., 2021.

Extension of data-driven approaches to the subseasonal-to-seasonal timescales (and beyond).

- 1) Background: State-of-the-art in forecasting extremes
- 2) The Prototype: methods and key results
- 3) Future Steps
- 4) Potential Impact

METHOD: FEATURE SELECTION

Key Components

- Multi-Method Ensemble Optimisation Algorithm
- Use of long-term paleo-simulation to boost training

Salcedo-Sanz et al, 2014; 2017; Perez Aracil et al., 2023.

- **Target:** number of summer heatwave days
- Potential prédictors: atmospheric, ocean, land and sea ice variables
- **Dimensionality-reduction**: kmeans clustering

AIM Identifying optimal combination of predictors for forecasting heatwaves months in advance

KEY OUTPUT: PREDICTORS OF SUMMERTIME HEATWAVE INDICES

What are the selected features/predictors?

European-wide view of "best" solutions and lag-times

KEY OUTPUT: SKILLFUL DATA-DRIVEN FORECASTS

60°N

40°N

- Correlation score number of HW days over summer - 1993-2016 – against ERA5
- Number of HW days May-July
- Initialized in May
- Data-driven, trained on 1850 years of past2k
- Dynamical multi-model ensemble mean from C3S

- 1) Background: State-of-the-art in forecasting extremes
- 2) The Prototype: methods and key results
- 3) Future Steps
- 4) Potential Impact

FUTURE STEPS

Expansion to **global** domain

Scientific follow-up: first-step in **understanding mechanisms** for newlyidentified predictors

Further **refining** of first prototype: different training sets, more predictors

Use in ML for Climate Science **training** (e.g. SCEWERO project with Babes-Bolyai University, Cluj, Romania)

A sub-seasonal version eligible for AI WeatherQuest competition (by adjusting lag times of predictors and target variables)

- 1) Background: State-of-the-art in forecasting extremes
- 2) The Prototype: methods and key results
- 3) Future Steps
- 4) Potential Impact

POTENTIAL IMPACT

Index-specific forecasting: why forecast the whole atmosphere when certain case-studies/stakeholders needs very specific information?

Operationalisation: multi-month, cloud-based forecasting of heatwaves

Training: Open-access code for use in ML for Climate Science training (e.g. SCEWERO project with university of Cluj, Romania)

Scientific relevance: first-step in understanding mechanisms for newly-identified predictors

With thanks to...

Ronan McAdam¹, Jorge Perez Aracil², Cesar Pelaez-Rodriguez², Antonello Squintu¹, Felicitas Hansen³, Harilaos Loukos⁴, Veronica Torralba⁵, Leone Cavicchia¹, Matteo Giuliani⁶, Eduardo Zorita³, Sancho Salcedo-Sanz², Enrico Scoccimarro¹.

¹Foundation CMCC - Euro-Mediterranean Centre on Climate Change, Italy
²Universidad de Alcalá, Spain
³Hereon, Germany
⁴The Climate Data Factory (TCDF), France
⁵Barcelona Supercomputing Centre, Spain
⁶Politecnico di Milano (POLIMI), Italy

METHOD: Long-term training data

Leveraging a 2000-year climate simulation

MPI-ESM "Past2k" - Climate reconstruction of 0-1850 (Jungclaus et al., 2017)

<u>Atmosphere:</u> ECHAM6 (1.875 deg, 47 vertical levels) <u>Ocean/Sea Ice:</u> MPIOM (1.5 deg, 40 vertical levels)

Reconstructions of land-cover, volcanic aerosols, solar forcings (with artificial 11 year cycle) and monthly average ozone concentrations.

METHOD: Potential predictors

Statistical and ML-based forecasts reduce the dimensionality of problem by using predefined area-averages/PCs/clusters as inputs...**can we select the most useful ones?**

Variable	Region
2m temperature (T2M)	Europe
Mean Sea Level Pressure (MSLP)	Europe
Soil Moisture (SM)	Europe
Geopotential Height 500hPa (Z500)	Europe
Total Precipitation (TP)	Europe
Outgoing Longwave Radiation (OLR)	North Atlantic
Sea Surface Temperature (SST)	North Atlantic
Sea Ice Content	Arctic
MSLP	Global
Z500	Global
SST	Global
OLR	Global

of daily ERA5 data Time series of average anomalies (w.r.t 1981-2010). Outgoing Longwave Radiation - Globa 80°1 60°N 40°N Sea Level Pressure - Europe 20°N 20°5 40°5 60°5 80°5 45°E 90°E 135°E 135°W 90°W 45°W 180° 40°N

K-means spatial clustering

0° 15°E

30°E

Sea Ice Concentration - Arctic

METHOD: Coral reef optimisation algorithm

RESULTS: Optimal skill in model-world

a) Training

Training period cross-validation 0-1600

70°N - 1.2 60°N - 1.1 - 1.0 ^{BS} W W Z 50°N - 0.9 40°N - 0.8 30°N 0.7 10°W 10°E 20°E 30°E 40°E 50°E 0°

b) Test 70°N - 1.2 60°N - 1.1 - 1.0 ^{BS}W N-BW 50°N - 0.9 40°N - 0.8 30°N 10°W 50°E 0° 10°E 20°E 30°E 40°E

Test period

1601-1850

In other words, how well can we recreate model world summer extremes using early information? The next question is...how transferable is this training/learning to the real world?

RESULTS: MACHINE LEARNING MODELS

From simulation to "real" (ERA5) predictors 🔁

- Correlation score number of HW days over summer - <u>1993-2016</u> – against ERA5
- Number of HW days May-July
- Initialized in May
- Data-driven, trained on 1850 years of past2k.

Comparing different ML models – which is the best? Linear Regression - LR Support Vector - SV Decision Tree – DT Random Forest – RF K Nearest Neighbour – KN Ada Boost – AB Multi-Layer Perceptron Light Gradient Boost - LGB

SUMMARY

- 1. Development of (Coral Reef) **optimization-based feature selection** of HW drivers; adapted from *(Perez-Aracil et al., 2025; in review)*
- 2. Training with millennial-scale paleo-climate transferable to "real-world" -> identification of predictors of extreme summers.
- 3. Significant skill of summer HW propensity over large parts of Europe **competing with/matching dynamical state-of-the-art.**
- 4. Potential improvement to corridor of low skill over northern Europe to Scandinavia.
- 5. Ongoing work: data-driven seasonal forecast system currently undergoing **benchmarking/sensitivity analysis** (*McAdam et al.; in review*) : including deep learning models, SHAP analysis...

METHOD: Validation set-up

1. Selection of potential predictors.

3. Training in model world (0-1850) – Testing in real world (1993-2016, ERA5) Can we transfer learning to the real world?

2. Training in model world (0-1600) – Testing in model world (1600-1850)

Can reduced dimensionality approach recreate HW index?

RESULTS: Optimising data-driven forecasts (example over greece)

Evolution of optimal combination of predictors (minimum N-RMSE)

"Heatmap" of optimal solutions ("best")

RESULTS: Forecasts

Evolution of optimal combination of predictors (minimum N-RMSE)

"Heatmap" of optimal solutions ("best")

References / Reading List

Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R.F., Pegenaute, F., Herrmann, F.R., Robine, J.M., Basagaña, X., Tonne, C., Antó, J.M. and Achebak, H., 2023. Heat-related mortality in Europe during the summer of 2022. *Nature medicine, 29*(7), pp.1857-1866. https://doi.org/10.1038/s41591-023-02419-z

Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D.G. and Salcedo-Sanz, S., 2023. Heat waves: Physical understanding and scientific challenges. Reviews of Geophysics, 61(2), p.e2022RG000780. <u>https://doi.org/10.1029/2022RG000780</u>

European Environmental Agency, Climate change, impacts and vulnerability in Europe 2012 – Summary, https://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/climate-change-impacts-and-vulnerability/view

García-Herrera, R., Díaz, J., Trigo, R.M., Luterbacher, J. and Fischer, E.M., 2010. A review of the European summer heat wave of 2003. *Critical Reviews in Environmental Science and Technology*, 40(4), pp.267-306. <u>https://doi.org/10.1080/10643380802238137</u>

Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M. and Holbrook, N.J., 2016. A hierarchical approach to defining marine heatwaves. *Progress in oceanography*, 141, pp.227-238. <u>https://doi.org/10.1016/j.pocean.2015.12.014</u>

Kornhuber, K., Coumou, D., Vogel, E., Lesk, C., Donges, J.F., Lehmann, J. and Horton, R.M., 2020. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. *Nature Climate Change*, *10*(1), pp.48-53. https://doi.org/10.1038/s41558-019-0637-z

Perkins, S.E., 2015. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. *Atmospheric Research*, *164*, pp.242-267. <u>https://doi.org/10.1016/j.atmosres.2015.05.014</u>

Prodhomme, C., Materia, S., Ardilouze, C., White, R.H., Batté, L., Guemas, V., Fragkoulidis, G. and García-Serrano, J., 2021. Seasonal prediction of European summer heatwaves. *Climate Dynamics*, pp.1-18. https://doi.org/10.1007/s00382-021-05828-3

Russo, S., Sillmann, J. and Fischer, E.M., 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades. *Environmental Research Letters*, 10(12), p.124003. DOI 10.1088/1748-9326/10/12/124003

Russo, S., Sillmann, J. and Sterl, A., 2017. Humid heat waves at different warming levels. Scientific reports, 7(1), p.7477. https://doi.org/10.1038/s41598-017-07536-7

Schaller, N., Sillmann, J., Anstey, J., Fischer, E.M., Grams, C.M. and Russo, S., 2018. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. *Environmental Research Letters, 13*(5), p.054015. DOI 10.1088/1748-9326/aaba55

Torralba, V., Materia, S., Cavicchia, L., Álvarez-Castro, M.C., Prodhomme, C., McAdam, R., Scoccimarro, E. and Gualdi, S., 2024. Nighttime heat waves in the Euro-Mediterranean region: definition, characterisation, and seasonal prediction. *Environmental Research Letters, 19*(3), p.034001. 10.1088/1748-9326/ad24cf