An Al Foundation Model for Earth Observation, Techniques and Applications Including Flood Rapid Mapping

Nikolaos Dionelis¹, Jente Bosmans¹, Ziyang Zhang^{3,1}, Riccardo Musto², Giancarlo Paoletti², Casper Fibaek¹, Nicolas Longépé¹

- 1 European Space Agency (ESA), Φ-lab, ESRIN
- 2 Leonardo Labs, Italy
- 3 Lancaster University, UK

Workshop on "Resilience to Natural Hazards through AI Solutions" International Telecommunication Union (ITU)

Contents

- **1. ESA Φ-lab** and presenter's background
- 2. EO Foundation Model PhilEO
- 3. Evaluation framework for EO Foundation Models
- 4. Techniques
 - Confidence quantification & assessment
 a) Classification, b) Regression
- 5. Applications
 - Flood Rapid Mapping
 - Building density regression, road segmentation, land cover mapping, estimation of age of buildings, etc

The ESA **Φ**-lab Offices

Φ-lab Explore Office

Explores the innovation universe and connects together EO and digital revolution

A team of Researchers and innovation seed funding (FutureEO)

Φ-lab Invest Office

Stimulates competitiveness by fostering the growth of entrepreneurial initiatives through investment actions from ESA Member States and private investors

A team of business innovators and a commercial co-funding programme (InCubed)

🖣 🚍 📲 📲 🚍 🖛 🕂 📲 🚟 🚍 📲 📲 📲 🚍 🛶 🕼 🖿 👭 📲 🖼 📟 💷 📾 ன 🔤 🖛 💌

·eesa @-lab

The ESA Φ-lab – What ?

Accelerate the future of Earth Observation via transformative innovation^{*} and commercialisation actions strengthening Europe's world-leading competitiveness Uniquely in ESA Φ-lab innovate and apply under-one-roof

ESA's Earth Observation Missions

Satellites 2010 2015 Heritage 08 2020 Meteosat 11 Meteosat 10 MSG Operational MetDo-C-Envisat MTG-II Proba-1 Arctic Weather 16 Satellite ichael Freilich 2025 roba-V Sentinel 34 Developing 40 EarthCAR Preparing 22 LO2M-A Sentinel-18 MTG-I2 Met0o-SG-A1 0-MS03 8-MS03 Total 86 Riomass ROSE-L-A DISTAL-A Hvdre GNSS ALTIUS CHIME-A CRESTAL-R nonu Aeolus-24 MTG-IT CHIME B 2030 TRUTHS MAGE Sentinel-6 Explorer-11 MetOp-SG-A2 MTG-SZ Met0p-56 World-class EO Explorer-12 systems developed Science Copernicus Meteorology cesa 0 EUMETSAT with European and global partners to address scientific

& societal challenges

5

The ESA Φ-lab – Why ?

From Earth Observation to Earth Action From data to actionable information

THE EUROPEAN SPACE AGENCY

Innovation Technologies axis and Applications

AXIS I Augmented Intelligence	AXIS II Innovative Computing Paradigms	AXIS III Innovative Computing Paradigms
Foundation Models Generative AI	On-Board Al Quantum Computing	Cognitive Space VR/AR Immersive Visualisation

Generative Al Decision Intelligence, Al Agent Explainability (xAl) Physics-Informed ML Digital Assistant and Twins Al4EO for Climate, Health, and Human On-Board Al Quantum Computing Hybrid HPC Computing Neuromorphic Biocomputing and others

Cognitive Space VR/AR Immersive Visualisation Web 3.0 IOT Distributed Ledgers/Blockchain

·eesa @-lab/

Presenter's background - Nikolaos Dionelis

- European Space Agency:
 - Internal Research Fellow at EOP-S Φ-lab Explore (since 04/2023)
 - **Research:** AI for Earth Observation (EO) (AI4EO)
 - Foundation Models & downstream tasks for EO
 - **Devise new** and adapt existing SoTA models
 - Programming & extensive experimentation:
 - Training, evaluation on
 - large-scale data
 - Comparison against benchmarks
 - Write invitations to proposals & evaluate

Sentinel-2, land cover labels, **building** density, road density

Foundation Model PhilEO

- **Problem:** Extract information from unlabelled satellite data in order to solve a number of downstream tasks, e.g. land cover
- Method: Develop a Foundation Model for EO
 - Use large amounts of geo-aware satellite data to pretrain and then fine-tune for downstream tasks
 - Geo-aware self-supervised learning
 - Geo-location: Longitude & latitude prediction
 - Reconstruction loss: Masking, MAE
 - Architectures: ViT, U-Net

· e esa

-lab

From top left: Sentinel-2, Prediction by our model, Ground truth, Correct classifications of the model, Incorrect classifications

- Datasets:
 - Global dataset PhilEO Globe, 500 GB (new)
 - Subset of MajorTOM, FastTOM, 2 TB
 - Scale-up to MajorTOM, 23 TB
 - In collaboration with Leonardo Labs
- Downstream tasks:
 - A. Flood Rapid Mapping
 - B. Building density pixel-wise regression, road regression segmentation, land cover semantic segmentation

Challenge: Limited labelled data

Dataset	Modality	Number of Patches	Sensing Type	Comments
Core-S2L2A	Sentinel-2 Level 2A	2,245,886	Multi-Spectral	General-Purpose Global (about 23 TB)
Core-S2L1C	Sentinel-2 Level 1C	2,245,886	Multi-Spectral	General-Purpose Global (about 23 TB)

- Fine-tune on: Dataset PhilEO Bench, 400 GB (new)
 - Global, labelled
- Evaluate PhilEO FM:
 - PhilEO Bench
 - Achieve improved performance on downstream tasks

Left: S-2 data: Visualization in **RGB** (3 bands) Middle: Prediction by model. Right: Ground truth labels: Classes like **Cropland**

• RGB colours defined by ESA WorldCover

• Results:

- Flood Rapid Mapping
 - Joint work with: Ziyang Zhang, ESA Φ-lab Visiting researcher, Lancaster University, UK
 - IEEE GRSS Flood Rapid Mapping dataset
 - IGARSS 2024 Challenge
 - Track-2: Flood rapid mapping with optical data
 - Sentinel-2 satellite multi-spectral images
 - http://www.grss-ieee.org/community/technical-committees/2024-ieee-grss-data-fusion-contest

- Flood Rapid Mapping (Ctd):
 - IEEE GRSS Flood Rapid Mapping labelled dataset
 - Harmonized Landsat SentineI-2 (HLS) data
 - Multi-spectral 30m res images
 - Labels: Flood extent labeled by Copernicus Emergency Management Service (CEMS)

http://ieee-dataport.org/competitions/2024-ieee-grss-data-fusion-

- Evaluation: F1-score
 - 0.84348, ZiyangZhang, 28
 - 0.89843, Henryljp, 1
 - Difference: 0.05495
 - Approximately 5 points

- Flood Rapid Mapping (Ctd):
 - EO Foundation Model approach
 - Fine-tuning
 - PhilEO Foundation Model
 - Ensemble of EO Foundation Models
 - Like Mixture of Experts (MoE)
 - PhilEO, Satlas, http://github.com/allenai/satlaspretrain_models
 - F1-score, 0.84348, ZiyangZhang, 28
 - http://codalab.lisn.upsaclay.fr/competitions/16699#results
 - Paper: Ongoing work: Ziyang Zhang, Nikolaos Dionelis, Plamen Angelov, and Nicolas Longépé, "An Interpretable Ensemble Geoscience Foundation Model for Flood Mapping," To be submitted, 2025.
 - <u>http://github.com/Ziyang-cyber/challenge_philab</u>

• Results (Ctd):

- Floods
- WorldFloods database
 - E. Portalés-Julià, et al., "Global flood extent segmentation in optical satellite images," Nature Scientific Reports, 13, 20316, 2023.
 - http://www.nature.com/articles/s41598-023-47595-7
 - Sentinel-2 multi-spectral data
 - Flood segmentation masks
 - 509 pairs
- O <u>http://spaceml-org.github.io/n</u>

- WorldFloods database (Ctd):
 - Ensemble: 4 models: PhilEO, Satlas, DOFA, Prithvi
 - Semantic segmentation: 3 classes: Water, land, cloud
 - Evaluation metric: Intersection over Union (IoU)
 - Evaluation of: i) PhilEO model, and ii) Ensemble

Model	IoU land (%)	IoU water (%)	IoU cloud (%)	Mean IoU (%)
Prithvi	86.92	73.76	66.71	75.80
DOFA	83.98	69.90	69.10	74.33
Satlas	87.28	75.28	76.78	79.78
U-Net	87.39	77.21	80.02	81.54
DeepLabv3+	88.10	77.45	81.21	82.25
PhilEO	85.58	74.09	77.61	79.09
Ensemble	88.61	78.05	81.37	82.67

- WorldFloods database (Ctd):
 - Potential future work: Change detection approach in addition to fine-tuning method

Results on the WorldFloods dataset.

Model	loU land	loU water	IoU cloud	Mean
Satlas	87.28	75.28	76.78	79.78
PhilEO	85.58	74.09	77.61	79.09
Ensemble	88.61	78.05	81.37	82.67

Φ-lab

RGB

Ground Truth

SatlasNet

- WorldFloods database (Ctd):
 - Evaluation of EO Foundation Models: Generalize across different spectral bands

Model	# Bands	IoU land (%)	loU water	IoU cloud	Mean IoU
Prithvi	6	86.55	72.00	67.17	75.05
Prithvi	13	86.92	73.76	66.71	75.80 (↑0.75)
DOFA	9	82.01	68.58	53.93	68.17
DOFA	13	83.98	69.90	69.10	74.33 (↑6.16)
PhilEO	10	86.39	73.51	67.31	75.74
PhilEO	13	85.58	74.09	77.61	79.09 (↑3.35)
Satlas	9	87.75	74.39	68.38	76.84
Satlas	13	87.28	75.28	76.78	79.78 (↑2.94)
U-Net	13	87.39	77.21	80.02	81.54
DeepLabv3+	13	88.10	77.45	81.21	82.25

- Summary & number of parameters of models
 - Foundation Models for EO and Geospatial AI

Model	Pretraining dataset	Pretraing image type	# Parameters (M)
U-Net	ImageNet	RGB	7.8
DeepLab v3+	ImageNet	RGB	45.7
PhilEO	MajorTOM subset	S-2	45.9
Satlas	SatlasPretrain	S-2	89.8
Prithvi	Harmonized Landsat S-2	Landsat S-2	127
DOFA	DOFA	S-1, S-2, GaofenNAIP, EnMAP	151

• Results (Ctd):

- Building density regression
 - Dataset: Custom, labelled
 - Evaluation metric: Mean squared error (MSE)
 - PhilEO (GeoAware_UNET_ft) outperforms ResNet (supervised learning), SeCo, SatMAE

- Building density regression (Ctd)
 - Qualitative evaluation
 - Images:
 - Left: Sentinel-2 input
 - Middle: Ground truth
 - Right: Prediction

Image

Labels

Prediction

- Building density regression (Ctd):
 - Decoder: UPerNet

• Results (Ctd):

- Road density regression
 - Evaluation metric: MSE
 - Decoder: UPerNet
 - Roads: Evacuation planning, emergency disaster management

- Results (Ctd):
 - Semantic segmentation land cover classification (Ic)
 - Dataset: ESA WorldCover (11 classes)
 - Evaluation metric: Accuracy (acc)
 - PhilEO (GeoAware_UNET_ft) outperforms other models

- Semantic segmentation land cover classification (Ctd):
 - Decoder: UPerNet

http://collections.sentinel-hub.com/worldcover/readme.html, http://collections.sentinel-hub.com/worldcover

Φ-lab

- Land cover classification (Ctd):
 - Patch classification: Labels at the image level
 - Majority class in image

Evaluation framework for EO Foundation Models

- **Problem:** Compare the performance of different models across downstream tasks
 - Tasks:
 - A. Building density pixel-wise regression
 - B. Road regression segmentation
 - C. Land cover semantic segmentation
 - Models:
 - A. PhilEO
 - B. Prithvi
 - C. SatMAE
 - D. SeCo
 - E. ResNet (supervised learning)
- Method: Fine-tune each model using same-architecture decoder per task

Evaluation framework for EO Foundation Models (Ctd)

• Method (Ctd):

- Decoder: Convolutional, UPerNet
- Dataset PhilEO Bench: Labelled, global, downstream tasks
 - Regression, Classification
- Measure sample efficiency of FMs: n-shot fine-tuning
- Confidence quantification & assessment
 - ESA WorldCover: Noisy labels, accuracy 77%
- Ongoing work:
 - Add downstream tasks to PhilEO Bench: Sen1Floods11 dataset, HLS Burn Scars
 - e.g., TerraMind model, <u>http://arxiv.org/pdf/2504.11171</u>
 - mIoU 90.78, Sen1Floods11

Techniques: a) Confidence quantification & assessment

- **Problem:** Confidence quantification for semantic segmentation use cases: Achieve improved performance
 - Confidence assessment: Indicator of performance, a priori
 - Low confidence:
 - Further model training
 - Collect more data
 - Anomaly detection/ Out-of-Distribution (OoD), change detection
 - Noisy labels
- Method: Model Confidence Assessment for Semantic segmentation (CAS)

Techniques: a) Confidence quantification & assessment (Ctd)

- Method (Ctd): Features of correct classification:
 - Softmax output probability, Entropy, Diff btwn 1st & 2nd
 - Spread of high probability pixels within segment
 - Gradient of DNN model
- **Results:** Evaluation: Correlation btwn IoU & confidence for segment
 - Confidence score histograms
 - Separability: Correct, incorrect

Techniques: b) Confidence quantification & assessment

- **Problem:** Pixel-wise regression downstream tasks: Conf quantification
- **Method:** Model Confidence-Aware Regression Estimation (CARE)
 - Confidence-aware fine-tuning and inference Ο
 - 2 heads: Continuous output (regression), confidence Ο
 - Variation in regression: Modelled by confidence metric
- **Results:** Building density

Error btwn confidence metric & \bigcirc error in regression

n=	10000	7500	5000	1000	500	100	50
Error, Mean	0.00683	0.00761	0.00759	0.0138	0.0167	0.0246	0.0261
Error, Med.	0.00150	0.00190	0.00184	0.0065	0.0088	0.0147	0.0159
MSE	0.00301	0.00316	0.00326	0.0039	0.0043	0.0051	0.0034

d) Confidence map, CARE (Ours) e) Abs. error btw prediction & gt

f) Abs. error btw pred. uncertainty & (e)

Applications

- Downstream tasks:
 - Flood Rapid Mapping
 - Building density regression, road segmentation, land cover mapping
 - Evaluation framework for Sentinel-2 FMs: PhilEO Bench
 - Estimation of construction year of buildings
 - Data fusion, multiple modalities
 - EO datasets:

 Noisy labels
 Fine-tuning:

 Confidence
 Europ

Estimation of age of buildings

- **Problem:** Estimation of construction year of buildings from multimodal dataset
 - Data fusion: Cross-view dataset, street & satellite VHR
 - Labelled dataset MapYourCity
 - Energy efficiency, age of buildings
- Method: Late data fusion: Concatenate features
 - 3 modalities: Inference without street-view

Flowchart of the deep learning based model we use - End-to-end method *FC = Fully Connected layers

Estimation of age of buildings (Ctd)

- **Results:** Evaluation metric: Classification confusion matrix
 - Diagonals: Mean Producer's Accuracy (MPA)
 - Large scale: Generalization to previously unseen cities
 - 7 classes for construction epoch of buildings: e.g., "Before 1920"
 - Comparison with single modality: Street only, improvement ~7%
- http://github.com/AI4EO/MapYourCity

Model	Performance of model
Accuracy	67.83%
Precision	68.00%
Recall	67.84%
F1-score	67.56%
Mean of diagonals of confusion matrix	64.03%

1920	0.87	0.033	0.04	0.023	0.016	0.011	0.0091
1940	0.24	0.54	0.11	0.062	0.021	0.019	0.0056
1950	0.12	0.066	0.59	0.15	0.037	0.03	0.01
1970	0.07	0.01	0.092	0.65	0.13	0.031	0.019
1980	0.084	0.0043	0.04	0.14	0.61	0.087	0.037
2000	0.062	0.014	0.029	0.082	0.12	0.63	0.059
2010	0.042	0.014	0.039	0.062	0.084	0.15	0.61
	1920	1940	1950	1970	1980	2000	2010

Main references

- C. Fibaek, L. Camilleri, A. Luyts, N. Dionelis, and B. Le Saux, "PhilEO Bench: Evaluating Geo-Spatial Foundation Models," in Proceedings International Geoscience and Remote Sensing Symposium (IGARSS), 2024. <u>http://arxiv.org/pdf/2401.04464</u>
- B. Le Saux, C. Fibaek, L. Camilleri, A. Luyts, N. Dionelis, G. Cascarano, L. Bagaglini, and G. Pasquali, "The PhilEO Geospatial Foundation Model Suite," European Geosciences Union (EGU), 2024. <u>http://meetingorganizer.copernicus.org/EGU24/EGU24-17934.html</u>
- N. Dionelis and N. Longepe, "Fine-Tuning Foundation Models with Confidence Assessment for enhanced Semantic segmentation," IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2024.3504293, 2024. <u>http://ieeexplore.ieee.org/document/10759697</u>
- N. Dionelis, C. Fibaek, L. Camilleri, A. Luyts, J. Bosmans, and B. Le Saux, "Evaluating and Benchmarking Foundation Models for Earth Observation and Geospatial AI," W ECCV FOCUS, 2024. <u>http://arxiv.org/pdf/2406.18295</u>
- N. Longepe, et al., "PhilEO Foundation Model using MajorTOM and an Evaluation Framework including Confidence Assessment," AGU, 2024. <u>http://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1683553</u>
- N. Dionelis, et al., "PhilEO Foundation Model," ESA W Digital Twins, Accepted, Oral presentation, 2025
- Nikolaos Dionelis, Francesco Pro, Luca Maiano, Irene Amerini, and Bertrand Le Saux, "Learning from Unlabelled data with Transformers: Domain Adaptation for Semantic Segmentation of High Resolution Aerial Images," in Proceedings IGARSS, 2024. <u>http://arxiv.org/pdf/2404.11299</u>
- Francesco Pro, Nikolaos Dionelis, Luca Maiano, Bertrand Le Saux, and Irene Amerini, "A semantic segmentation-guided approach for ground-to-aerial image matching," IGARSS, 2024. <u>http://arxiv.org/pdf/2404.11302</u>