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Motivation
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URBAN FLOODING
Flooding is one of the most frequent and damaging disasters, intensified by 
climate change and urbanization.

OBSERVATIONAL GAP
Conventional methods often lack the spatial granularity and immediacy
needed for real-time urban flood depth assessment. 

OPPORTUNISTIC SENSING
Street-level and oblique aerial imagery provides a complementary, device-
independent source with broad accessibility.

STURM-FloodDepth APPROACH
We introduce an open-source deep learning pipeline for urban flood depth 
estimation and spatial mapping using submerged vehicles as reference 
objects. 



Avoids ethical and privacy concerns (no human pose analysis)

Ensures reproducibility (open dataset and code)

Generalizes across perspectives, including street-level and oblique aerial images

Moves beyond image-level aggregation, enabling object-level flood depth estimation

Includes a georeferencing step using feature matching for spatially accurate mapping

Works without proprietary multimodal models, enhancing transparency

Optimizes computational efficiency for near-real-time deployment

Key Innovations Over Prior Work
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The STURM-FloodDepth pipeline
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Data Preprocessing

IMAGES

of submerged vehicles
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3,367

DEPTH LEVELS

based on visible car parts
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VEHICLES   AS 
VISUAL PROXIES

Standard dimensions
Common in urban areas

Human references 
excluded

Wan et al. (2024). Automatic detection of urban 
flood level with YOLOv8 using flooded vehicle 

dataset. J. Hydr., 639, 131625. 
https://doi.org/10.1016/j.jhydrol.2024.131625

Notarangelo, N. (2025). STURM-FloodDepth
Flooded Cars [Data set]. Zenodo. 

https://doi.org/10.5281/zenodo.14833532
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Results & Evaluation 
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Test Set

Contextual cues 
suggest predominant 

representation of 
Chinese urban areas 

despite missing 
geographic metadata.

Real-World Use Case
2021 Luxembourg 
Floods

Oblique aerial images  
provided by the 
Administration de la 
Gestion de l’Eau of 
Luxembourg and 
crowdsourced images 
retrieved from social 
media and news 
platforms.



Results & Evaluation 
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Receiver operating characteristic curves 
for the fine-tuned ResNet-50

Precision Recall F1-Score Support
Level0 0.83 0.78 0.80 80
Level1 0.62 0.56 0.58 72
Level2 0.76 0.80 0.78 113
Level3 0.69 0.89 0.78 45
Level4 0.83 0.63 0.72 30
Accuracy 0.74 340
Macro Avg 0.74 0.73 0.73 340
Weighted Avg 0.74 0.74 0.74 340

Predicted
Label

L0 L1 L2 L3 L4

Level 4 1.00% 1.66% 0.96% 4.74% 91.63%

Level 1 9.90% 56.29% 28.85% 2.61% 2.35%

Level 1 2.00% 50.24% 39.61% 6.42% 1.73%



Application to the 2021 Luxembourg Floods
Flood depth estimation in street-view and oblique imagery
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Image sources: Zorica Antic Facebook; Ville D'Echternach Facebook.



Application to the 2021 Luxembourg Floods
Georeferencing and Mapping 

9

Cross-view image 
matching between a flood-
affected oblique aerial 
image and an 
orthorectified aerial image 
using the SuperGlue
algorithm.

Image sources: Ville D'Echternach
Facebook; Microsoft Bing Maps - Vexcel
Imaging.

REFERENCE
Sarlin et al. (2020). SuperGlue: Learning 
Feature Matching with Graph Neural
Networks. 
https://doi.org/10.48550/arXiv.1911.11763



Application to the 2021 Luxembourg Floods
Georeferencing and Mapping 
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Base image sources: OpenStreetMap – CARTO; Microsoft Bing Maps.



Application to the 2021 Luxembourg Floods
Average computational performance per pipeline component 

on a consumer-grade laptop
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Conclusions and future directions
❑ The proposed pipeline effectively estimates and geolocates object-level urban flood 

depth observations from street-level and oblique imagery.
❑ The method generalizes across diverse conditions and demonstrates potential for real-

world deployment in urban flood monitoring.
❑ Limitations include approximations from discretized depth classes and reliance on 

visible vehicles for estimation. Spatial accuracy may be reduced in scenes with limited 
aerial reference data.

➢ The method exhibits a high level of technological readiness, is cost-effective, 
computationally efficient, scalable, and fully open-source.

➢ It provides a viable solution for enhancing early warning systems, especially in data-
limited urban environments.
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Future developments

Quantitative validation against
authoritative data

Advance WKT/GPS-free cross-
view geolocation techniques

Integration with ancillary data 
(e.g., DEMs, RS flood maps)



Towards a sustainable future with impactful
EO environmental solutions for all
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Data driven approachDL-based high resolution insights

https://www.weo-water.com

https://www.weo-water.com/
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