Supported by:

Co-organized by:

eesa

THE EUROPEAN SPACE AGEN

ITUEvents

Workshop on "Resilience to natural hazards through Al solutions"

8 May 2025 Frascati, Italy

Adding value to post-disaster mapping withA

Filippo Catani

University of Padova - Machine Intelligence and Slope Stability Laboratory

Content

- 1. Post-disaster mapping, why it is needed, what are the limitations
- 2. Multi-temporal maps and explainability
- 3. Adding info on mechanics and typology
- 4. Adding info on kinematic zones and volumes
- 5. Extracting info from time series (InSAR)

Post-disaster Gaps for Landslides

- 1. State-of-the-art methods (based on AI) provide affected areas with segmentation No info on type of process or sub-process
- 2. After main trigger (weather related or EQK) we have multiple activations (10⁴) and each one becomes a local residual risk source
- 3. Precursors are lost after trigger?
- 4. How to fine tune 10⁴ numerical simulations for short-term post-

event risk scenarios?

Training datasets must incorporate diversity

Detection must be scale-independent

Bhuyan et al., 2023 – GISSc. Rem. Sens.

Attention Deep Supervision Multi-Scale U-Net

Data Leakage Avoidance and Incremental Training

Meena et al., 2023 - ESSD

Bhuyan et al., 2023 – Scientific Reports

Adding multi-temporal information

(Bhuyan et al., 2023, GISSc. Rem.Sens.)

Adding multi-temporal information and Explainability

85°12'30"E

85°13'45"E

85°15'0"E

85"16'15"E

2017 Gorka Earthquake of 2015 (Nepal)

2018

2019

Landslide activation density before and after the EQK (2013-2019)

Possibility to understand and follow postearthquake slope dynamics patterns and explaining parameter importance

XAI Parameter ranking with time

2005-07	2008	2011	2013	2015	2017-18
RAIN	POS	cos	VPS	VPS	DTS
ELE	MPI	VPS	RAIN1	RAIN	TPI
SLO	ELE	NDVI	cos	TPI	RAIN1
ASP	SLO	MPI	POS	МРІ	MPI
POS	ALM .	POS	MPI	cos	POS
CUR	PGV	TPI	AIN	PGA	ELE
MPI	DTS	RAIN1	ТРІ	NDVI	FACC
RAIN1	TPI	FACC	FACC	POS	PGA
NDVI	PGA		PGA	ELE	PGV
DAH	DAH	ELE	ELE	FACC	RUN
ЦТН	ASP	CUR	NDVI	ASP	SLO
FACC	FACC	PGA	DTS	PGV	CUR
DTS	LITH	ASP	PGV	DTS	COS
TPI	CUR	DTS	ASP	CUR	NDVI
RAND	NDVI	DAH	CUR	SLO	DAH
	RAND	PGV	DAH	LITH	ЦІТН
	†	SLO	SLO	DAH	VPS
		LITH	LITH	RAIN1	ASP
		RAND	RAND	RAND	RAND
	EQK				†

EQK

Adding information on the type of failure mechanism

3,505

 $\times 10^5$

⁽Bhuyan et al., 2024 – Nature Communication)

Adding information on the type of failure mechanism

Detection of Failure Mechanism with Al-driven Topological Analysis (AIDTA)

(Bhuyan et al., 2024 – Nature Communication)

Separating kinematic zones

Separation of Kinematic Zones with Physics-Informed Machine Learning (PIML) and Topological 3D Analysis

Bhuyan et al. (Eng. Geol. 2025)

Separating kinematic zones

km

Exploiting displacement time series

ADA Tools and ADA detection method from Barra et al. 2017 and Navarro et al. 2020.

Typologies considered in the model

Time-Series/Image AI Processing

ADA_GLB_ID:11479 Ture Label: Landslide Predicted Label: Landslide Probability:0.9108

ADA_GLB_ID:81139 True Label: Mining Predicted Label: Mining Probability:0.9536

ADA_GLB_ID:18056 True Label: Subsidence Predicted Label: Subsidence Probability:0.9986

ADA_GLB_ID:12417 True Label: DSGSD Predicted Label:DSGSD Probability:0.9710

10 Correctly Classified DSGSD Examples - SHAP Value Density

Deployment on Unseen Datasets at Large Scale

Supported by: namelianal Union of Geodeses and Geosterica

ITUEvents

Workshop on "Resilience to natural hazards through Al solutions"

8 May 2025 Frascati, Italy

Thanks for the attention

IUGG

UGGI

MACHINE INTELLIGENCE AND SLOPE STABILITY LABORATORY