

Enhanced Compression Model for Beyond-VVC Capability

"Future video coding – advanced signal processing, AI and standards" ITU-T SG21 and ISO/IEC SC 29 Joint Workshop January 17, 2025

Yan Ye Head of DAMO Video Technology Lab, Alibaba Group U.S.

Outline

Introduction to ECM ECM tools and performance **O B E C M tool assessment Future outlook**

Enhanced Compression Model (ECM)

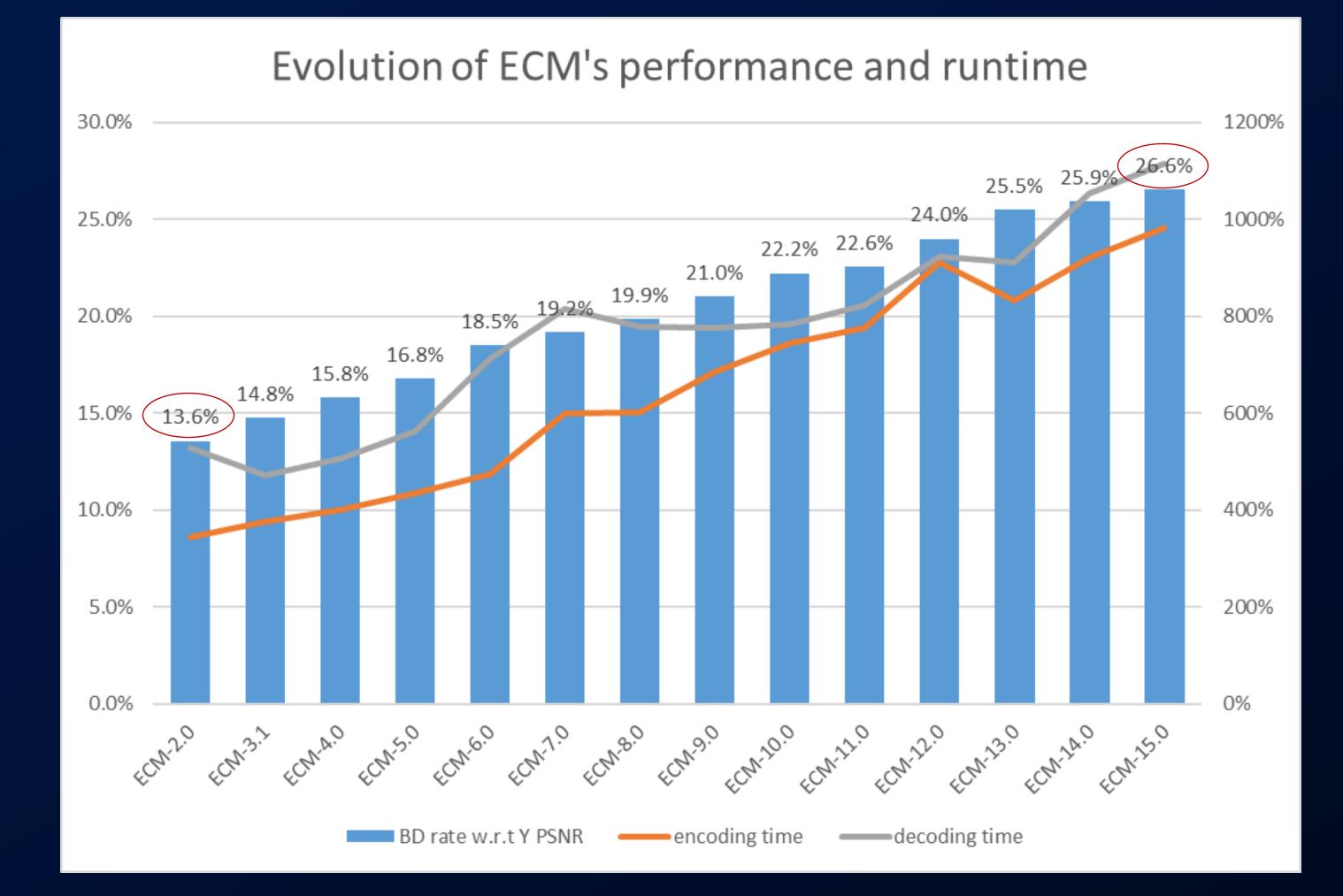
- In April 2021, shortly after VVC version 1 was finalized, JVET received contribution JVET-U0100 that showed 11.5% coding performance gain vs. VVC
- Includes tools proposed to VVC but not adopted and extensions of VVC coding tools
- In July 2021, ECM software platform was established to facilitate exploration toward next-gen video codec standard
 - Performance steadily improves with more tools included into newer versions of ECM
- The latest ECM-15.0 (output from Nov. 2024 meeting) achieves **26.6%** coding performance gain vs. VVC
- Four ECM-related Ad hoc Groups (AHGs) for well-coordinated exploration

AHG12

- ECM common test conditions
- Alg. descriptions
- Gen. coordination

AHG4 & AHG17

- Subjective quality assessment
- Beyond CTC testing
- Based on hybrid block-based video coding framework, mainly using traditional signal processing algorithms
- More data-driven training used by various tools


V. Seregin et al., "JVET AHG report: ECM software development (AHG6)", JVET-AK0006, Jan. 2025 Y.-J. Change et al., "Compression efficiency methods beyond VVC", JVET-U0100, April 2021

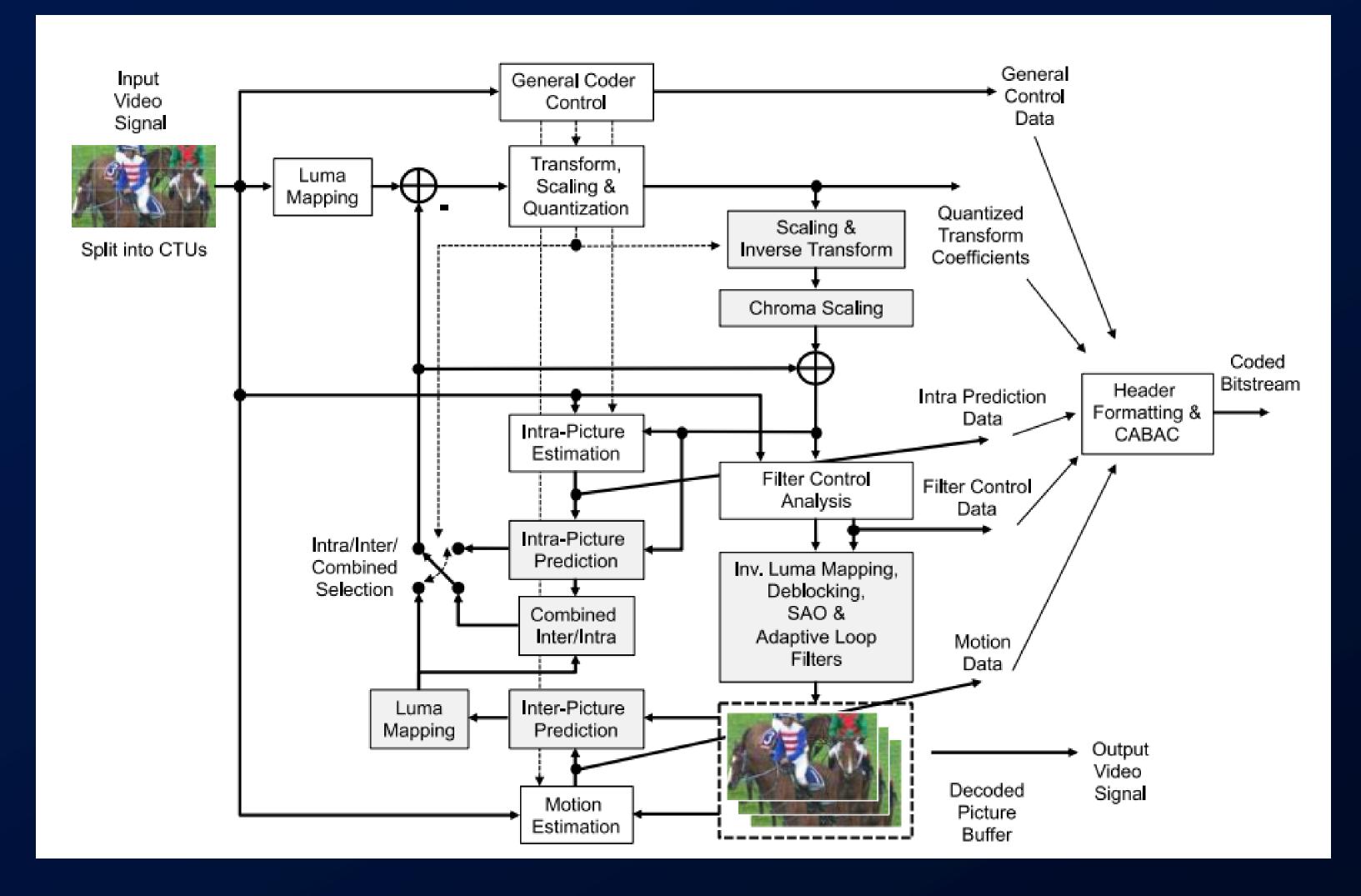
ECM evolution: performance vs. enc./dec. runtime

Random Access (RA) config. of ECM common test conditions


YUV4:2:0 10b coding, covering SD, HD, UHD resolutions

BD rate savings (%) in terms of Y PSNR

Encoding and decoding time relative to VVC ref. sw. VTM



Versatile Video Coding (H.266/VVC)

B. Bross et al., "Overview of the Versatile Video Coding (VVC) Standard and Its Applications", IEEE Transactions on Circuits and Systems for Video Technology, 2021

Mostly inherited from H.265/HEVC

- CTU, QT block partition
 - Intra pred. modes
- Advanced MV pred. and merge
- Translational motion comp. pred.
 - IBC and palette (SCC ext.)
 - Deblocking, SAO
 - CABAC

New elements

- Larger CTU, binary/ternary tree
- Larger transform, multi. transf. set
- 65 angular pred. directions, WAIP
 - History-based merge
 - Geometric partitions
 - Combined Intra/Inter Pred.
 - Affine, PROF, BDOF, DMVR
- New loop filters: LMCS, ALF, CC-ALF
 - Ref. pic. resampling
 - And more...

ECM coding tools

- Enhancements and combinations of various VVC coding tools
- More on-the-fly adaptation at decoder
- More tools based on data-driven training

Intra prediction (27)

- Conv. cross-comp. model (CCCM), other cross-comp. pred.
- Extrapolation-based intra prediction (EIP)
- NN-based intra prediction
- Decoder side deriv., etc.

Inter prediction (42)

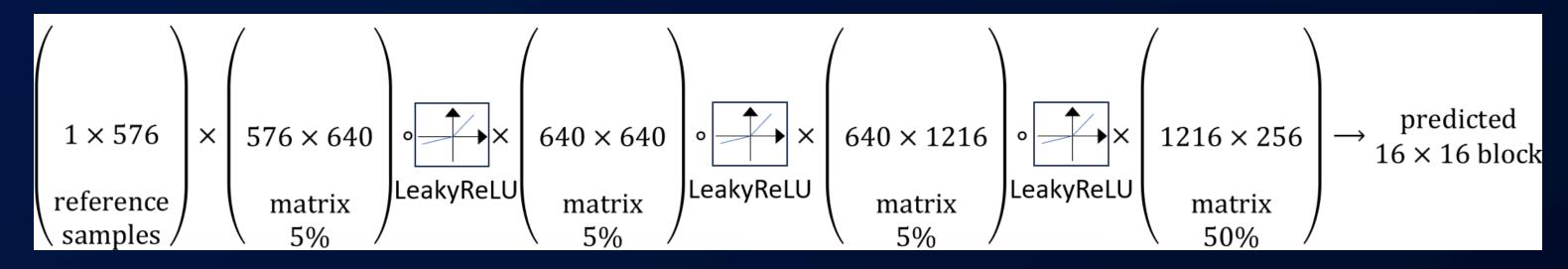
- Inter template matching & reordering
- Enh. DMVR, enh. affine, enh. GPM, OBMC, etc.
- Non-adjacent candidates, chained MV, etc.
- IBC for natural content

Loop filters

- Various enh. to ALF, chroma ALF, and CC-ALF
- Bilateral filter for luma and chroma
- Cross-comp. SAO

Transform and quant. (11)

- Non-sep primary transform
- Enhanced MTS, SBT and LFNST
- 8-state depend. quant.
- Quant. center shift, etc.


Entropy coding (5)

 Extended precision Multi. hypo. prob. estimation • Slice-type based window size, etc

More coding tools based on data-drive training, e.g. PDP, NN intra, NSPT

- NN-based intra pred. is a well-published concept, and the basis for VVC's matrix-based ightarrowintra prediction (MIP)
- Incorporated into the neural network-based video coding (NNVC) exploration in JVET ightarrowsince Jan 2023
- Simplified NN intra pred. recently adopted into ECM-15.0 ightarrow
- Training of NN models follows process defined by NNVC
- A total of 6 NN models supporting 17 block sizes ightarrow

16x16 NN model: sequential matrix multiplications and LeakyReLUs (piecewise-linear functions)

NN-based intra prediction

Mode size Block sizes supported 4×4 4×4 $8 \times 4, 4 \times 8$ 8×4 16×4 $16 \times 4, 4 \times 16$ $32 \times 4, 4 \times 32$ 8×8 8×8 16 ×8 16 ×8, 8 ×16 32 × 8, 8 × 32 16 × 16 16 × 16, 32 × 16 16 × 32, 32 × 32 64×64

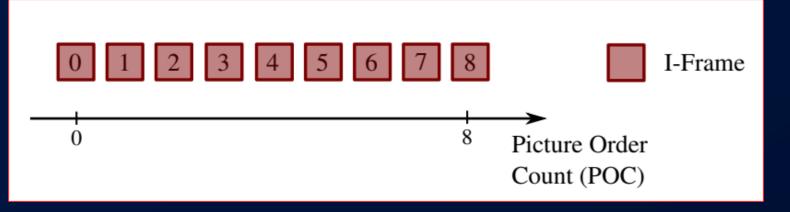
NN-based intra prediction (cont.)

Perf. vs. complexity evolution of NN intra tool in the context of ECM (All Intra config)

* JVET-AI0225 is a joint contribution from two companies, and used to provide performance and

- F. Urban. et al., "AHG12 : neural network-based intra prediction", JVET-AH0156, April 2024
- F. Urban. et al., "AHG12 : neural network-based intra prediction", JVET-AI0201, July 2024
- S. Eadie, et al, "AhG12: Neural network-based intra prediction with DIMD mode derivation", JVET-Al02
- T. Dumas, et al, "EE2-2.20_2.21: Neural network-based intra prediction with DIMD mode derivation",

2024.11	Model		# non-zero params				MACs/pixel				Memory (I				
 ET-AJ0249 S% Y-BD rate % U-BD rate % V-BD rate % V-BD rate 	4x4		508	23			ŝ	317	76				0.	195	
/ E I - AJUZ49	8x4		618	86			-	193	34				0.	224	
•	16x4		1234	420	0		-	192	28				0.	450	
8% Y-BD rate	8x8		1322	260	0		-	206	66				0.	472	
	16x8		178	754	4		-	139	96				0.	590	
	16x16		2153	376	6			84	1				0.	596	
01.6% EncT 09.8% DecT	1.0	NN non-NN													
nd runtime data 225, July 2024 JVET-AJ0249, Nov. 2024	- 8.0 - 8.0 - 0.0 - 0.0 - 0.0 - 2.0 0.0														
	4X4	8x4 - 4x8 -	16x4 - 4x16 -	32x4 -	4x32 - 8x8 -	- 16x8	8x16 - 32x8 -	8x32 -	16x16 -	- 32x16	- 20201	- 20X20	_		


Block size

MB)

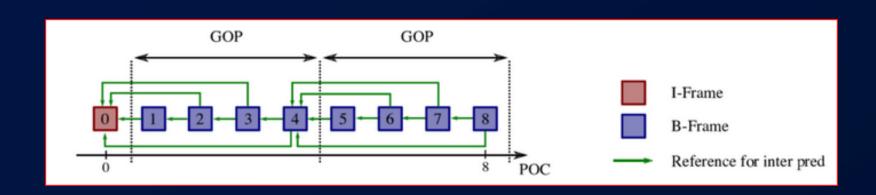
		A	l Intra Main 1	0				Random Access Main 10					
		Over	VTM-11.0ecr	n15.0					Over	m15.0	15.0		
	Y	U	V	EncT	DecT			Y	U	V	EncT	DecT	
Class A1	-14.3%	-15.2%	-26.5%	1136%	528%		Class A1	-26.9%	-23.4%	-35.5%	1148%	1018%	
Class A2	-20.8%	-23.5%	-28.0%	1131%	569%	Natural content	Class A2	-30.1%	-33.3%	-38.7%	1103%	1216%	
Class B	-14.4%	-21.9%	-19.7%	1052%	601%		Class B	-24.5%	-31.5%	-28.8%	934%	1077%	
Class C	-14.3%	-11.2%	-12.3%	1008%	551%		Class C	-26.3%	-21.7%	-22.4%	1003%	1180%	
Class E	-18.6%	-21.8%	-20.1%	996%	623%		Class E						
Overall	-16.1%	-18.6%	-20.7%	1059%	575%		Overall	-26.6%	-27.6%	-30.4%	1026%	1118%	
Class D	-12.2%	-8.2%	-8.9%	990%	585%		Class D	<u>-27.1%</u>	<u>-22.2%</u>	<u>-23,4%</u>	949%	1295%	
Class F	-29.9%	-33.5%	-33.7%	744%	673%		Class F	-32.7%	-34.9%	-35.6%	870%	827%	
Class TGM	-43.1%	-48.8%	-48.0%	576%	704%		Class TGM	-42.3%	-47.8%	-47.6%	736%	656%	

All Intra config

No temporal prediction, still picture coding

Random Access config

Screen content


Hierarchical-B prediction, with picture reordering

ECM-15.0 performance (cont.)

Low Delay B config

		Low	delay B Mair	า 10				Low delay P Main 10										
		Over '	VTM-11.0ecr	n15.0				Over VTM-11.0ecm15.0										
	Y	U	V	EncT	DecT			Y	U	V	EncT	DecT						
Class A1							Class A1											
Class A2						Natural	Class A2											
Class B	-21.7%	-35.5%	-32.0%	965%	897%	content	Class B	-19.5%	-44.6%	-41.8%	836%	876%						
Class C	-24.1%	-24.5%	-26.3%	917%	969%		Class C	-22.1%	-34.0%	-34.6%	774%	896%						
Class E	-21.4%	-25.6%	-24.7%	861%	593%									Class F	-19.9%	-35.5%	-35.9%	779%
Overall	-22.4%	-29.4%	-28.3%	922%	830%		Overall	-20.5%	-38.8%	-37.9%	801%	812%						
Class D	-25.5%	-25.4%	-26.3%	934%	1111%		Class D	-24.8%	-36.5%	-37.2%	784%	1014%						
Class F	-30.3%	-38.2%	-37.9%	824%	729%		Class F	-28.4%	-43.6%	-44.1%	815%	743%						
Class TGM	-40.6%	-50.2%	-50.0%	740%	622%		Class TGM	-38.7%	-52.6%	-52.1%	790%	613%						

Temporal bi-prediction without picture reordering

Low Delay P config

Screen content

ECM tool assessment

- JVET meeting
- Groupings of ECM tools considering potential implementation issues
- Collect and report tool-off/tool-on results

Group 1

- Tools that interleave MV derivation with reconstruction
- Hardware pipeline issues
- Ex: inter template matching

Group 2

- Tools that interleave candidate list derivation with reconstruction
- Latency and pipeline issues
- Ex: local illumination compensation

Group 3

• Ad hoc Group on ECM tool assessment (AHG7) established since the Jan 2023

• Ensure proper tool controls within ECM software in coordination with software AHG

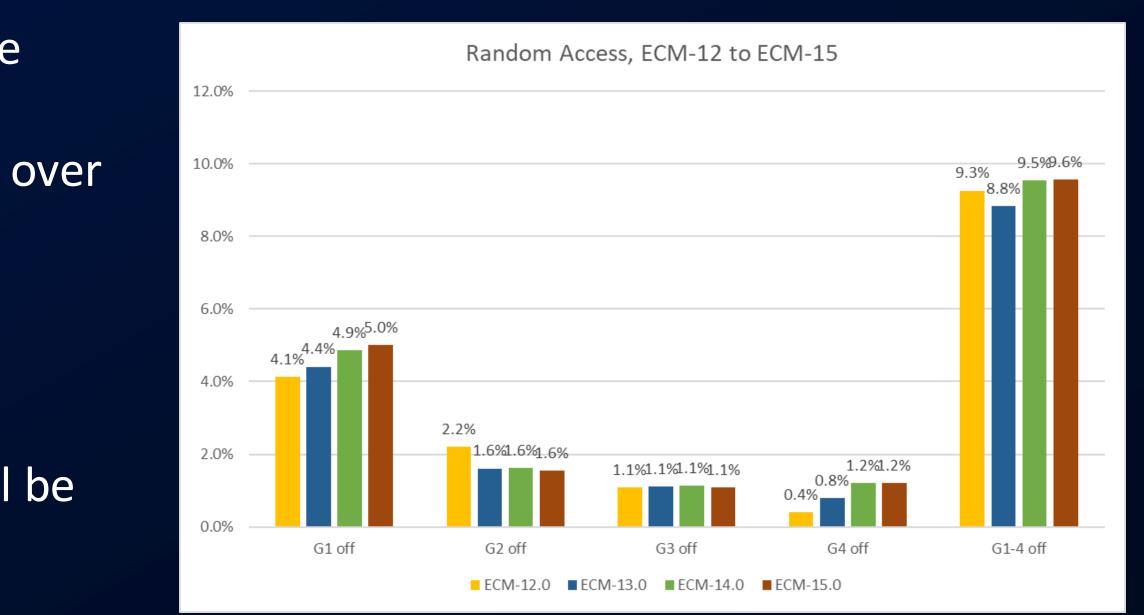
o Intra tools requiring decoder search Latency and/or hardware cost • Ex: intra template matching

Group 4

- Tools needing more processing on neighboring reconstructed samples
- Latency and/or hardware cost
- Ex: conv. crosscomponent model

Group 5 (new)

- Tools needing large memory footprint
- Hardware cost
- Ex: non-separable primary transform



Tool assessment of ECM-15.0

		An	chor ECM-1	Anchor VTM11ECM15				
	Y	U	V	EncT	DecT	Y	U	V
G1 off	5.0%	4.9%	5.1%	82%	67%	-22.9%	-24.1%	-26.8%
G2 off	1.6%	1.1%	1.4%	87%	98%	-25.4%	-26.8%	-29.5%
G3 off	1.1%	3.1%	4.1%	92%	97%	-25.8%	-25.5%	-27.8%
G4 off	1.2%	4.0%	4.3%	92%	97%	-25.7%	-24.9%	-27.6%
G1-4 off	9.6%	14.1%	16.0%	59%	63%	-19.5%	-17.7%	-19.8%

- Random Access config., groups 1-4, group 5 to be tested in the future
- Tool off performance shows still significant gains over VVC (VTM with encoder-only optimizations)
- Relatively stable performance over time
- Study of the tools, not representing any final conclusions on their implementation feasibility
- Closer examination of implementation issues will be conducted during standardization

O Concluding remarks

Conclusion and future outlook

- ECM demonstrates beyond-VVC compression capability
 Rate reduction of 16.1% (AI), 26.6% (RA), and 22.4% (LDB) at the same quality
 - Rate reduction of 16.1% (AI), 26.6% (R (luma PSNR)
- Visual assessments recently performed in coordination with AG 5, showing some subjective benefits (JVET-AH0344)
- At recent meetings, discussions started regarding next gen. video codec standard
- Requirements and use cases being collected
- New AHG on beyond-CTC testing, many companies volunteering in the effort
- Could potentially lead to Call for Evidence in the near future.
- Next video codec standard expected to be another successful joint standard from ITU-T SG21 and ISO/IEC JTC 1/SC 29

Thanks **ke**

