11-12-2024

Fraunhofer Institute for Integrated Circuits IIS

Network Energy Savings Beyond 5G: 3GPP RAN Perspective

Geordie George Chief Scientist, 3GPP RAN1 Delegate Broadband and Broadcast Department, Fraunhofer IIS

ETSI and ITU Symposium on ICT Sustainability: Standards Driving Environmental Innovation Geneva, Switzerland, 11-12 December 2024

Fraunhofer Institut für Integrierte Schaltungen IIS

Standardization, Partnerships and Associations of Fraunhofer Society

A GLOBAL INITIATIVE

Contributions since 2015: **Network Energy Savings (NES)**, NTN, V2X, MIMO, XR, Positioning, RedCap, AI/ML...

ngmn the engine of broadband wireless innovation

Non-profit organization, founded 1985, >1100 employees, annual budget approx. 168 Mio € 16 locations in 12 cities: **Erlangen**, Nuremberg, Fuerth, Ilmenau, Dresden, ...

Energy Consumption in Cellular Networks

5G is more energy efficient than 4G but consumes much more energy

→ Energy savings needed for meeting sustainability goals and reducing operational expenditures

Distribution of Network Data Traffic Load

Large share of energy inefficient lightly-loaded cells

Source: Mavenir Intel Whitepaper, "A Holistic Study of Power Consumption and Energy Savings Strategies for Open vRAN Systems", Feb 2023

Always-ON common signals are transmitted from all sites irrespective of traffic load
 > gNB sites consume significant energy even with no traffic load

Energy Savings and Network Performance

How is base station energy consumption related to performance metrics?

- Data traffic distribution → type of data, number of users
 Transmission rates to each user → resource (time/spatial/frequency/TX-power domains)
 - occupancy, channel quality, UE reception quality* (noise figure, demodulation, detection)
- Base station power consumption P_{BS} in active transmission and in non-active (sleep) states
- Several research problems to be explored in modeling and analysis

*NGMN Alliance Whitepaper, "Green Future Networks, Network Energy Efficiency V1.1" July 2021.

٠

Energy Savings in 3GPP 5G NR

3GPP Timeline

Network Energy Savings (NES) in RAN

- Release 18
 - Study Item on NES (finalized by Q4 2022)
 - Work Item on NES (Q1 to Q4 2023)
- Release 19
 - Work Item on further enhancements on NES (ongoing, started in Q1 2024)

BS power consumption modeling [TR 38.864]: sleep states and active downlink/uplink

- Different sleep states: relative power levels with increasing transition times to deeper states
- Active DL/UL: power consumption scaled with antenna/bandwidth/TX-power resources

BS power consumption modeling [TR 38.864]: downlink example

Consider DL power consumption (with example relative power levels):

Share of antenna (s_a), bandwidth (s_f), TX-power (s_p) resources and PA efficiency (η)

BS power consumption modeling [TR 38.864]: downlink example

Consider DL power consumption (with example relative power levels):

- Simply micro-sleeping 50% of the time gives 40% NES
 - > Time domain techniques to enter sleep states are very beneficial for NES in sparse traffic
- Disabling 50% antennas gives 40% NES
 - > Adaptation of spatial elements can provide significant NES gains
- Scaling bandwidth or TX-power down by 50% gives 24% NES
 - > TX-power adaptation has less performance impact compared to bandwidth adaptation

BS power consumption modeling [TR 38.864]: downlink example

Consider DL power consumption (with example relative power levels):

- Simply micro-sleeping 50% of the time gives 40% NES
 - > Time domain techniques to enter sleep states are very beneficial for NES in sparse traffic
- Disabling 50% antennas gives 40% NES
 - > Adaptation of spatial elements can provide significant NES gains
- Scaling bandwidth or TX-power down by 50% gives 24% NES
 - > TX-power adaptation has less performance impact compared to bandwidth adaptation

Time domain: increase inactive periods to enter sleep modes

Frequency/Time domain: increase inactive periods in a subset of carriers in carrier aggregated systems

Spatial domain: use only a subset of antenna elements and/or TRPs (TX/RX points) in multi-TRP operation

Power domain: TX power adaptation, energy efficient TX

Along with NES benefits, <u>impact on performance</u> (coverage, throughput, delay, UE power consumption, UE complexity etc.) and <u>specification effort</u> play key roles in reaching standardization agreements

NES in 3GPP: Release 18 Work Item

No impact on IDLE/INACTIVE UEs, no adaptation of common signals (Q1 to Q4 2023)

NES in 3GPP: Release 19 Work Item

Common signal adaptation is being considered (ongoing, started in Q1 2024)

Frequency/Time domain: On-demand transmission of synchronization (SSB) signals on secondary carriers in carrier aggregated systems

Desired Power vs Load Profile

Need for network design with focus on low energy consumption

Ideal BS power profile: power consumption close to zero Watt for zero carrier load
 Would require hardware optimizations together with NES enhancements in standardization

6G Vision for Enhanced Network Energy Savings

Network design with focus on low energy consumption

Today

- Network designed for high capacity
 - Implies high energy consumption by default
 - Energy consumption is inelastic to load
- Basic NES techniques to opportunistically reduce energy consumption

Future

- Network design for low energy consumption
 - Adaptively ramp up consumption as per load
 - Longer periods in energy saving states
- NES techniques with more specification efforts: redesign of waveform, initial access ...

Fraunhofer Institute for Integrated Circuits IIS

Thank you

Geordie George Broadband and Broadcast Department, Fraunhofer IIS geordie.george@iis.fraunhofer.de