

Environmental impacts of **software applications**: Digital basic resources and the automated environmental evaluation of **digital services**

ECO JIGIT

Dirk Bunke; Ran Liu; Felix Behrens; Jens Gröger Öko-Institut e.V.

ETSI and ITU Symposium on ICT Sustainability

Geneva, 11 December 2024

What is it about?

• The question: How to assess (and optimize) the ecological

footprint of digital services?

- The project ECO:DIGIT
- Main elements of the approach:
 - Digital supply chains
 - Digital basic resources
 - LCA and supplements: MEG equivalents + the SVHC Score
 - The test bench.

-1- The project

Enabling green COmputing and DIGItal Transformation

- funded by the Federal Ministry for Economic Affairs and Climate Protection (BMWK)
- Timeline: 01.05.2023 30.04.2026
- Project team:

<u>https://ecodigit.de/en/home</u>

www.oeko.de

ne project ECOJDIGIT

Main Goal:

 To evaluate the environmental impacts of software applications by using a transparent and standardized method

- Develop, validate, and provide an automated evaluation environment (test bench) that transparently discloses key figures (e.g. power consumption, the use of hardware resources, data transferred).
- The test bench considers software applications operating in four deployment scenarios: mobile networks, end devices, cloud platforms, and edge computing.

Key questions and steps for software developers / supplier:

- How is your software distributed on data centers and end devices?
- On which hardware does your software run?

- What are the environmental impacts of manufacture, software, power? (We can give estimates, if needed).
- Run your software on the test bench.
- We measure digital basic resources with performance counters.

• Get the environmental impact of your application!

The approach in detail:

 Assessing the ecological impacts of digital services:

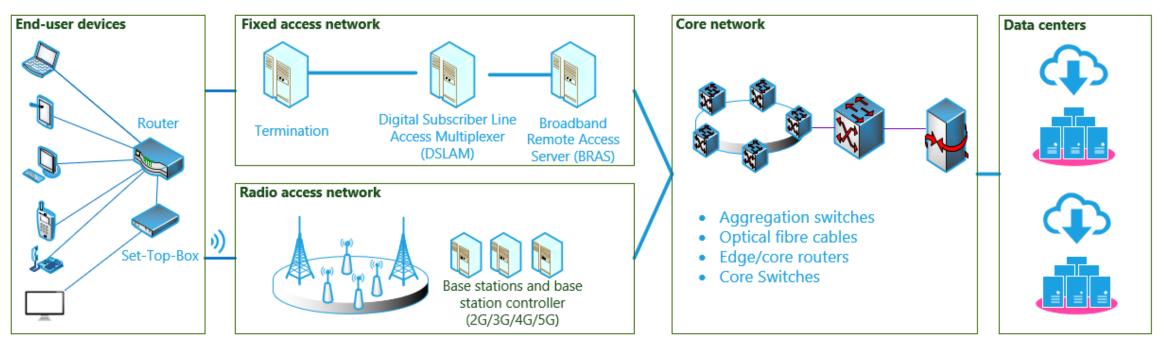
Assessing hazardous substances: • **MEG equivalents and the SVHC**

				U-1113111U	G • V •
Method sketch v1.3 10.10.2024	Öko-Institut e.V. Institut für engewandte äkologie Institut för Applied Ecology				
Life cycle assessment of digital serv	ices				
Methodology for determining the environmenta					
cloud services and other digital services in dis	unduted ff initiastructures	MEG equivalents	and the	SVHC Score	assessment
// Jens Gröger Felix Behrens Ran Liu Dirk Bunke	Contents	-			
The following method sketch was developed in the eco:digit research project funded by the Federal Minis-	Digital supply chain 2	of problematic su	ubstance	es in software	and digital
try of Economics and Climate Protection (BMWK), which	Basic digital resources 3		serv	rices	
focusses on the environmental impact of software. In the research project, the participating organisations are de-	Life cycle assessment 6		501 (1005	
veloping a simulation environment with which software	Merging life cycle assessment,				
can be tested on different virtualised hardware plat- forms. Strategies for optimising the environmental im-	DBR and digital supply chain 13	Dirk Bunke		Liu	Felix Behrens
pacts of software and hardware infrastructure can be de-	Data collection 19	Öko-Institut e.V. Freiburg, Germany, <u>d.bunke@oeko.de</u>	Oko-Ins Berlin, C	titut e.V. Sermany;	Öko-Institut e.V. Berlin, Germany;
rived from the test results. The methodology presented here for determining the environmental impact of digital	Literature 26	Jens Gröger			
services builds the methodological basis for this.		Öko-Institut e.V. Berlin, Germany.			
		Defini, Octimaly.		A major obstacle to re	cycling is the presence of
		Abstract: A wide range of chemicals are used in and use of electronic devices. For most application problematic substances are now available that haw For the assessment of sustainability in the ICT see important to know to what extent problematic cl In the ECO.DIGIT project, we developed the indi	ns, alternatives for e better properties. ctor, it is therefore hemicals are used. cator TOX for this	problematic substances in we substances are not only relevan devices. The production of 10 many hazardous substances for ment measures to prevent da necessary. Electronic devices	ste streams. But problematic t at the end-of-life of electronic CT hardware already requires or which serious risk manage- mage to workers' health are
core		purpose, which complements the method of life The indicator TOX consists of a single value, the This is the total quantity of problematic sub according to their hazardousness. Monoethylene used as the reference substance for the aggregatic used in the substance of the aggregatic	MEG equivalents. stances, weighted glycol (MEG) is on. The method of	amounts of problematic subst retardants in the plastic parts adverse effects on the envir provision of digital services centers. There are often sever	ances, e.g. brominated flame. In addition, chemicals with onment are required for the e.g., cooling agents in data

weighing and aggregating of amounts of problematic substances using MEG equivalents described here can be used for all hazardous substances not only in the electronics sector In addition, the SVHC score shows how much is known about the concentrations a particularly problematic group of chemicals in a device, the so called SVHC ('Substances of Very High Concern').

obstacle to recycling is the presence of substances in waste streams. But problematic re not only relevant at the end-of-life of electronic production of ICT hardware already requires lous substances for which serious risk manageres to prevent damage to workers' health are Electronic devices can contain very different problematic substances, e.g. brominated flame the plastic parts. In addition, chemicals with ects on the environment are required for the digital services e.g., cooling agents in data centers. There are often several options that would make it possible to reduce the environmental impact of a service. To this end, it is important that the corresponding impacts are visible and quantified

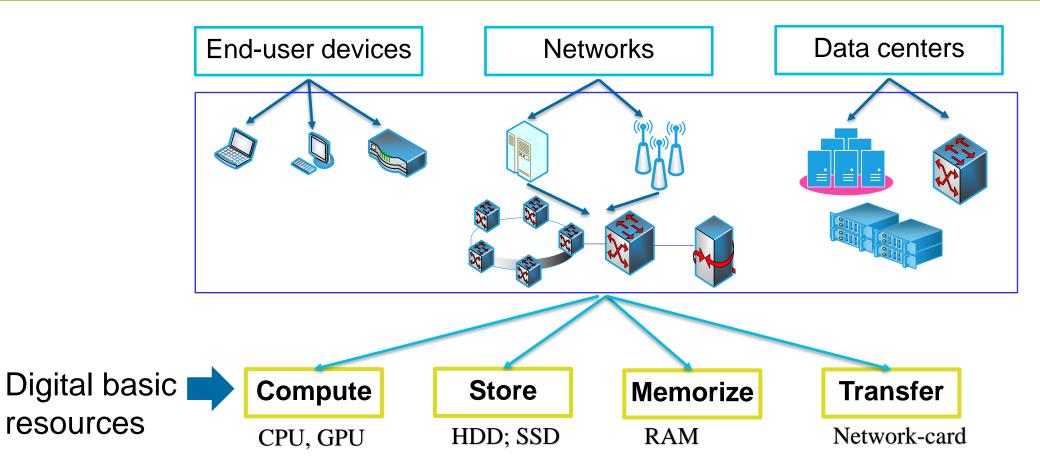
We therefore propose broadening the scope of an analysis of the environmental impact of digital infrastructures and


https://ecodigit.de/en/home/publications

https://www.oeko.de/en/publications/meg-equivalents-and-the-svhc-score-assessment-of-problematic-substances-in-softwareand-digital-services/

• Now: Focus on some key elements

-2- What is needed to perform the digital service ?


The digital supply chain: The backbone to deliver a digital service

 Identify the components (hardware devices = "platforms") involved to deliver the specific digital service

-3- The common structural elements: Four digital basic resources (DBR)

-3- Digital basic resources and digital work

Each hardware component: a specific amount of digital basic resources

• Example: average digital resources provided by a platform

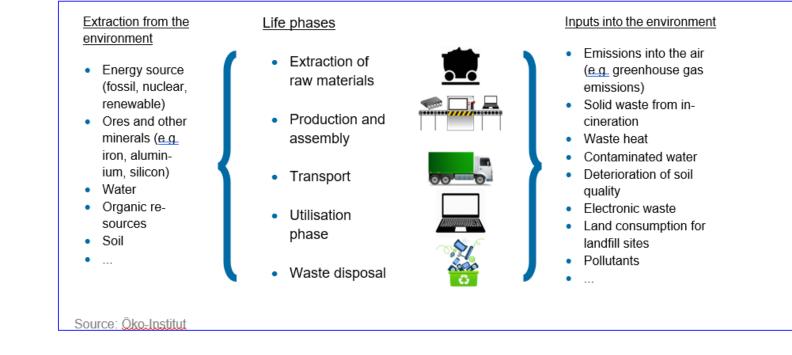
Hardware component	Abbreviation	Digital basic resource of the platform (DBR)	Exam- ple	Unit	Average capac- ity utilisation or occupancy (_{load} coverage)	Average basic digital resource provided basic digital re- source (DBR _{a ver- age})
CPU	co (compute)	CPU frequency * bus width	128	GHz*bit	20%	25.6 GHz*bit
RAM	me (memorise)	Working memory space	8	Gigabyte	10%	0.8 gigabyte
Storage	st (store)	Hard disc space	4.000	Gigabyte	50%	2,000 gigabytes
Network	tr (transfer)	Maximum data transmission	100	Megabit/s	2%	2 megabit/s

Exemplary basic digital resources of a platform

Source: Öko-Institut

Table 1:

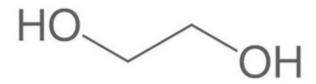
Multiplication with life expectancy and average load



digital work over the lifetime

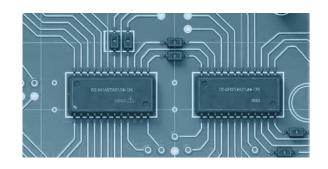
-4- Digital basic resources and their ecological impact

Assess the ecological impacts


- for production of hardware
- for use of hardware.

Recommendation: Go beyond CO2 and energy!

Environmental impacts: Categories investigated in eco:digit


- **Global Warming** Potential (GWP)
- Abiotic Resource Depletion Potential (ADP)
- Water Use (WU)
- Cumulative **Energy Demand** (CED) of digital infrastructures.
- Total quantity of **Waste** Electrical and Electronic Equipment (WEEE) in kilograms
- Problematic substances in the digital supply chain (TOX) (in MEG equivalents) (3 aspects) + SVHC Score

TOX: Problematic substances within the digital supply chain Element 1: Use of hazardous substances: production of ICT hardware

Table 1Inventory of chemicals used for the production of wafer, weigthing factors and
MEG equivalents. Unit: g/cm2 wafer output.

Substance	Amount		Weighting Human Health	MEG equiv	alents
Sulfuric acid	6	g/cm²	100	12	g/cm²
Hydrogen peroxide	2	g/cm²	100	4	g/cm²
Hydrogene fluoride	0.5	g/cm²	1,000	10	g/cm²
Phosphorous acid	2.7	g/cm²	100	5.4	g/cm²
2-Propanol	2.3	g/cm²	50	2.3	g/cm²
Ammonium hydroxide	0.89	g/cm²	100	1.78	g/cm²

- Data from the LCA inventory
- Important information even independent from exposure situation
 - Aggregation: MEG equivalents
 - Weighting: H phrases

*

-5- Environmental impacts: Calculation specific to main components

Separate calculation of the environmental impacts in the manufacturing phase for

- Processors
- Main Memory
- Permanent Memory
- Network components

- Compute
- Store
- Memorize
- Transfer

• shared components (e.g. power supply, housing) = "overhead"

-6- How much does one unit of a specific DBR cost? / 2

Calculate effort / benefits ratios: e.g. for the utilisation phase / 1

- Environmental impact: depending on the emissions factors for energy
- e.g. 1 kWh electricity = 420 grams CO2 equivalents (electricity mix Germany 2020)

Emission factors for electrical energy						
Environmental impact category (EI)	Emission factor (EF)	Example value (electricity mix, DE, 2020)	Unit			
CED	<u>CED</u> el	8,37	[MJ/ <u>kWh</u> e]			
GWP	GWPel	<mark>0,421</mark>	[kg CO ₂ e/ <u>kWh_{el}]</u>			
ADP	ADPel	5,24 E-6	[kg Sb <mark>eg/kWh</mark> e]			
Water	Waterel	0,239	[m³ world eq/kWhe]			
WEEE	WEEEel	n.a.	[kg weee/kWhei]			
тох	TOXel	n.a.	[kg MEG eg/kWhe]			
Source: <u>Öko-Institut</u> (according	to Ecoinvent 3.10)	Legend: n.a. = not applicable				

-6- How much does one unit of a specific DBR cost? / 3

Calculate effort / benefits ratios: e.g. for the utilisation phase / 2

- $EBR = effort \ benefit \ ratio = \frac{effort}{benefit}$
- Example: personal computer, average power consumption specific for DBR "Compute"

DBR abbreviation	Paverage (gross)	Average basic digital resource provided basic digital resource (DBR _{average})	EBR_P = Paverage/DBRaverage
co (compute)	<mark>81,7 W</mark>	25.6 GHz*bit	<mark>3.1932 W/(GHz*bit</mark>
me (memorise)	23,4 W	0.8 gigabyte	29.1946 W/Gigabyte
st (store)	11,7 W	2,000 gigabytes	0.0058 W/gigabyte
tr (transfer)	5,8 W	2 megabit/s	2.9195 W/(megabit/s

• 1 unit of the digital basis resource "Compute" (**1 Ghz* bit**)

Öko-Institut e.V.

-7 - How much digital work has been needed for a digital service?

Example: Video stream, 1 h, data centre in Germany, delivered via internet to a private DSL router, displayed on a desktop computer

igital work (DW) along the digital supply chain							
Digital work	Desktop computer	Home router	Transmis- sion net- work	DC network switch	DC server	DC storage	Unit
DW _{co}	44.851	-	-	-	134.554	-	Gbit
DWme	4.205	-	-	-	8.410	-	Gigabyte*s
DWst	5.256.000	-	-	-	657.000	1.971.000	Gigabyte*s
DWtr	21.024	21.024	21.024 *	21.024 *	31.536	10.512	Megabit

Source: Öko-Institut

E

* the data volumes in the transmission grid and data centre are likely to be higher than the data generated by the user. Corresponding factors still need to be worked out or measured. -1- Run the software application on the test bench: a virtual digital supply chain

Suitable logging tools must be used within the test bench to record the following parameters:

Table 15:Measurement of the digital work used by a software product

- Service units: Number of utilisation units in the measurement period [no.]
- DW_{co} : CPU or GPU work calculated from full load seconds [Gbit/s*s]
- DW_{me}: RAM memory work [GByte seconds]
- DW_{st} : Permanent memory work [GByte seconds]
- DWtr : Data transmission work [Mbit/s*s]

-2- Calculate automatically key figures: Cumulated Energy Demand, Global Warming Potential, Ressource Depletion, Water Demand, Electronic Waste, MEG equivalents

ECO DIGIT

Enabling green COmputing and DIGItal Transformation

- ECO:DIGIT: What you can expect?
 - Test bench: for software applications.
 - Assessment method: Key indicators for ecological impacts of software and hardware
 - Check your application / your hardware: CO2e, resources, water, energy, E-waste, MEG equivalents and SVHC Score for problematic substances.
 - Track changes in environmental impacts in an automated and transparent way.

Optimize both: hardware and software!

Your contacts

Jens Gröger Öko-Institut e.V.

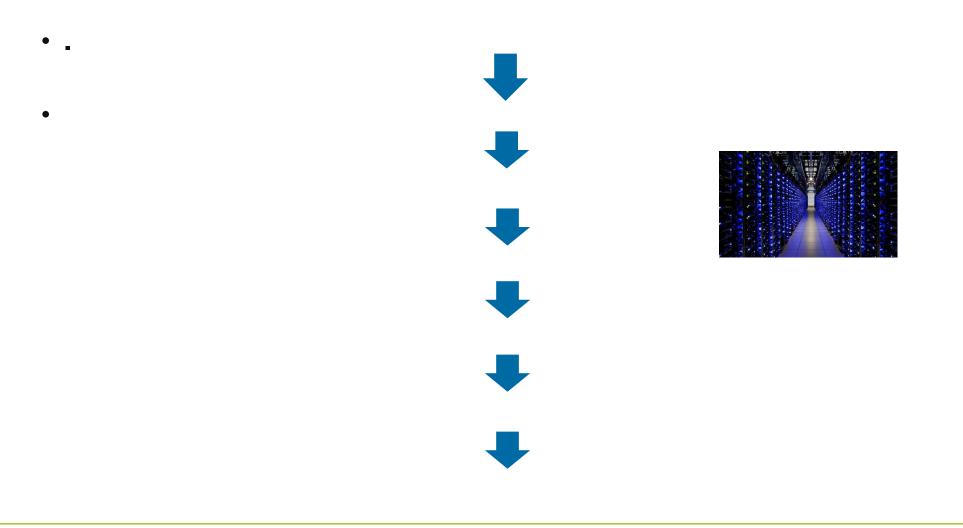
Ran Liu Öko-Institut e.V.

E-Mail: j.groeger@oeko.de E-Mail: <u>r.liu@oeko.de</u>

Prof. Dirk Bunke Öko-Institut e.V.

E-Mail: <u>d.bunke@oeko.de</u>

Felix Behrens Öko-Institut e.V.


E-Mail: <u>f.behrens@oeko.de</u>

Thank you for your attention!

Questions are welcomed!

You like to know more details beyond 12 mins?

7 Steps to evaulate the environmental impacts of a software application

- Draw the digital supply chain for the application
- Think in digital basis resources (DBR)

- Assess the ecological impacts of hardware components
- Calculate the amount of digital work supplied by hardware components
- Split the ecological impact and allocate it to digital basis resources
- Run the software application on the test bench
- Determine the amount of work required from the application and calculate its footprint.

www.oeko.de

Vortragstitel Referentenname Ort Datum

۲

Example: Global Warming Potential / Manufacture of a PersonalComputerAllocation of environmental impacts to basic resources

Figures in kg CO2 equivalents

Hardware- components	Environmental impacts: kg CO2-equiv.	Allocation parameter for Overhead	Overhead	digital resources +	Allocation to the 4 basic digital resources
CPUs/GPUs	a = 150 kg	a/(a+b+c+d) = 48%	24	A = 174 kg	co (compute)
RAMs	b =100 kg	b/(a+b+c+d) = 32%	16	B = 116 kg	me (memorize)
SSDs/HDDs	50 kg	c/(a+b+c+d) = 16%	8	C = 58 kg	st (store)
Network-components	10 kg	d/(a+b+c+d) = 3%	2	D = 12 kg	tr (transfer)
remaining components	50	-	-	-	-
(Overhead)					
Total	$\Sigma = 360 \text{ kg}$	100%	$\Sigma = 50 \text{ kg}$	$\Sigma = 360 \text{ kg}$	

Öko-Institut e.V.

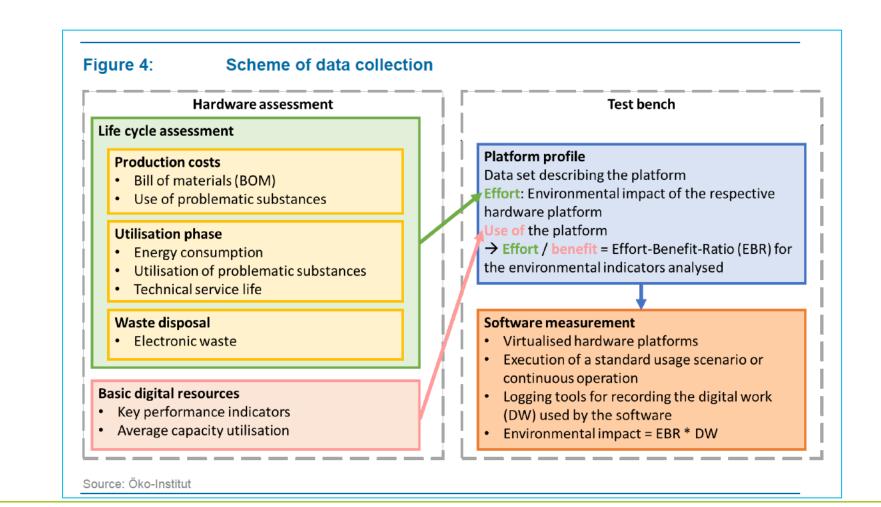
EBR = effort benefit ratio =

effort

benefit

-6- How much does one unit of a specific DBR cost? / 1

Calculate effort / benefits ratios: e.g. for manufacture


- Input 1: Environmental impact for the manufacture of a hardware component (= platform)
- Input 2: Digital work provided by the platform

Example: Computer platform with a technical service life (lifetime) of 4 years

DBR abbreviation	Environmental impact Gross <u>El_{ei,embedded}</u> (e.g.: El) _{GWP}	Digital work (<u>DW_{DBR})</u> provided over the lifetime at average utilisation (_{load} coverage)	effort benefit ratios for manufacturing EBR_EI _{DBR} = <u>El_{ei} embedded</u> /DW _{DBR} (Example: EBR <u>_GWP)_{DBR}</u>
co (compute)	174 kg CO ₂ e	53,821,440 Gbit	3.23 E-06 kg CO ₂ e/Gbit
me (memorise)	116 kg CO ₂ e	1,681,920 gigabytes*s	6.90 E-05 kg CO ₂ e/(gigabyte*s)
st (store)	58 kg CO ₂ e	4,204,800,000 gigabytes*s	1.38 E-08 kg CO ₂ e/(gigabyte*s)
tr (transfer)	12 kg CO ₂ e	4,204,800 megabits	2.85 E-06 kg CO ₂ e/megabit

- Digital work to compute 1 Gbit: 3,3 milligrams CO2-equivalents...
- Specific platform / average utilisation / LCA differentiated by components

-7- Putting the pieces together...

Allocation to a specific digital application by using specific performance metrics

Specific performance associated Environmental impacts of Effort-benefit-ratios with an individual software 4 basic digital resources CPU/GPU Environmental impacts_{compute} Х Compute Performance over lifetime_{compute} RAM Environmental impacts_{memorize} Memorize Performance over lifetime_{memorize} SSD/HDD Environmental impacts_{store} Х Store Performance over lifetime_{store} Transfer Environmental impacts_{transfer} Х Transfer Performance over lifetime_{transfer}

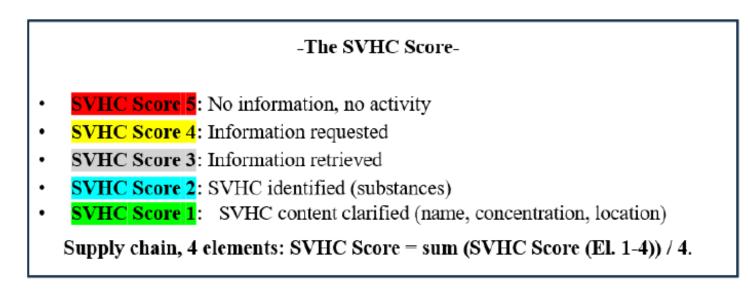
Öko-Institut e.V.

Enabling green COmputing and DIGItal Transformation

- Categorizing hardware into **four basic digital resources** (Compute, Memorize, Store, Transfer) **:** Better understanding of different software applications, their varying demands on hardware, and their environmental impacts.
- Needed: Key performance indicators of these 4 basic digital resource. Investigations and real examples will be carried out during the project.
- Combination of the LCA method with **specific approaches for assessing problematic substances**:
 - a more complete picture of the environmental impact of digital services.
 - MEG equivalents, based on the hazard statements of chemicals: weight and aggregate quantities of chemicals used or present in digital devices.
 - SVCH Score: state of knowledge on substances of very high concern in hardware components.

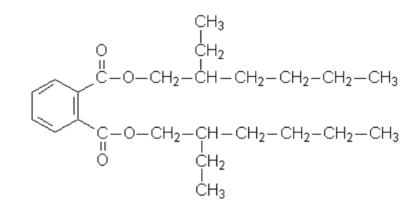
Problematic substances within the digital supply chain Substances of very high concern (SVHC) in ICT / 4

ビ Öko-Institut e.X.


Consumers: Right to know, REACH Art. 33

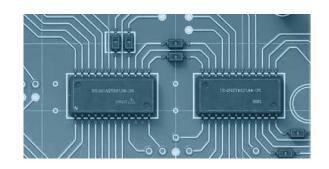
SCIP

Producers/ importers of hard ware: Notification requirement to ECHA (European Chemicals Agency), SCIP (https://echa.europa.eu/de/scip-database database)


Substances of Concern In Products

• Which score does your product have?

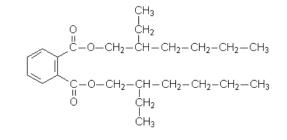
More about problematic substances:


MEG equivalents and the SVHC Score

TOX-E: Problematic substances within the digital supply chain Element 1: Use of hazardous substances: production of ICT hardware

Table 1Inventory of chemicals used for the production of wafer, weigthing factors and
MEG equivalents. Unit: g/cm2 wafer output.

Substance	Amount		Weighting Human Health	MEG equiv	alents
Sulfuric acid	6	g/cm²	100	12	g/cm²
Hydrogen peroxide	2	g/cm²	100	4	g/cm²
Hydrogene fluoride	0.5	g/cm²	1,000	10	g/cm²
Phosphorous acid	2.7	g/cm²	100	5.4	g/cm²
2-Propanol	2.3	g/cm²	50	2.3	g/cm²
Ammonium hydroxide	0.89	g/cm²	100	1.78	g/cm²


- Data from the LCA inventory
- Important information even independent from exposure situation
 - Aggregation: MEG equivalents
 - Weighting: H phrases

*

TOX-E: Problematic substances within the digital supply chain Element 2: Content of hazardous substances in ICT hardware

Concentrations of flame retardants and metals in plastics of waste from electronic devices (plastic fraction with small particles with a maximum size of 25 mm). Unit: mg/ kg plastics.

Substance	Concen- tration		Substance	Concen- tration	
Flame retardants			Metals		
ТВВРА	1,700	mg/kg	Antimony	1,400	mg/kg
DecaBB	14	mg/kg	Cadmium	36	mg/kg
ТВР	50	mg/kg	Lead	1,400	mg/kg
ВТВРЕ	360	mg/kg	Mercury	0.3	mg/kg
DBDPE	1,100	mg/kg	Nickel	270	mg/kg
DDC-CO	66	kg/kg			

- Flame retardants
- Softeners
- Fluorinated antidripping agents
- Heavy metals

Large differences between products and basic resources !

Table 2

TOX-E: Problematic substances within the digital supply chain Element 3: Problematic substances: use phase of ICT

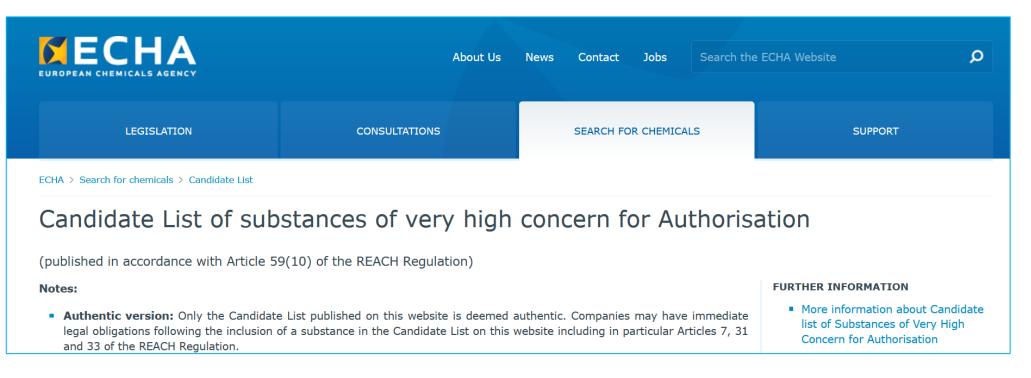
Table 3Chemical identity, formula and global warming potentials (GWPs) of cooling
agents used in data centers. (GWP from production and intrinsic potential of
the substance).

Name	Substance	GWP	
R 134a	C2H2F4	1,446	kg CO₂ equivalents/kg
R 290	C2H8 (Propane)	4	kg CO2 equivalents/kg
R 32	CH2F2	983	kg CO2 equivalents/kg
R 717	NH₃ (Ammonia)	2	kg CO2 equivalents/kg
R 718	H ₂ O (Water)	0	kg CO2 equivalents/kg
R 744	CO ₂ (Kohlendioxid)	1.8	kg CO2 equivalents/kg

1 MW cooling capacity, loss of 16 kg R 134a / year

- Cooling agents
- Cleaning agents
- Fire protection foams

Large differences between products and basic resources !


463 kg MEG equivalents ! Allocation to the digital servives provided by the data center.

TOX-E: Problematic substances within the digital supply chain Element 4: Substances of very high concern (SVHC) in ICT / 1

The most hazardous substances, e.g. PFOA, PCBs, HBCD...

REACH Candidate List / 1

TOX-E: Problematic substances within the digital supply chain Element 4: Substances of very high concern (SVHC) in ICT / 2

The most hazardous substances, e.g. PFOA, PCBs, HBCD...

REACH Candidate List / 2

Page 1 of 5 👻 50 Items per Page 👻 Showing 1 - 50 of 240 results.					← First Previous	Next	Last \rightarrow
Substance name 🗘 expand / collapse	EC No. 🗘	CAS No. 🗘	Date of inclusion	Reason for inclusion 🗘	Decision	IUCLID dataset	
Oligomerisation and alkylation reaction products of 2-phenylpropene and phenol Phenol, methylstyrenated EC No.: 270-966-8 CAS No.: 68512-30-1	700-960-7	-	23-Jan-2024	vPvB (Article 57e)	D(2023)8585-DC	•	•
Bumetrizole (UV-326)	223-445-4	3896-11-5	23-Jan-2024	vPvB (Article 57e)	D(2023)8585-DC		0
2-(dimethylamino)-2-[(4-methylphenyl)methyl]- 1-[4-(morpholin-4-yl)phenyl]butan-1-one	438-340-0	119344-86-4	23-Jan-2024	Toxic for reproduction (Article 57c)	D(2023)8585-DC		•

Öko-Institut e.V.

Öko-Institut e.V.

TOX-E: Problematic substances within the digital supply chain Element 4: Substances of very high concern (SVHC) in ICT / 3

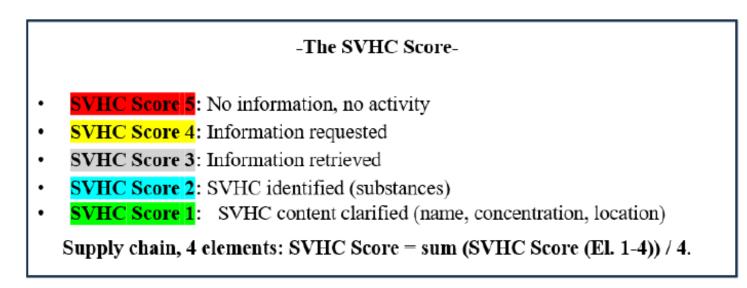
Fig.2 Substances of very high concern in a desktop PC. Information notified to the SCIP database at the European Chemicals Agency (ECHA).

OVERVIEW For the safe use instruction of the article go to: <u>Safe use instruction</u>					
CANDIDATE LIST SUBSTANCES					
Substance name(s)	Reason for inclusion				
2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-on	e Toxic for reproduction (Article 57c)				
1,3,5-Tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione (TGIC)	Mutagenic (Article 57b)				
Lead titanium trioxide	Toxic for reproduction (Article 57c)				
Lead titanium zirconium oxide	Toxic for reproduction (Article 57c)				
Hexahydromethylphthalic anhydride	Respiratory sensitising properties (Article 57(f) - human health)				
1, 2-dimethoxyethane; ethylene glycol dimethyl ether (EGDME)	Toxic for reproduction (Article 57c)				
Diboron trioxide	Toxic for reproduction (Article 57c)				

Source: ECHA 2024.

Problematic substances within the digital supply chain Substances of very high concern (SVHC) in ICT / 4

ビ Öko-Institut e.X.

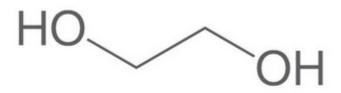

Consumers: Right to know, REACH Art. 33

ation requirement to ECHA (European Chemicals

Producers/ importers of hard ware: Notification requirement to ECHA (European Chemicals Agency), SCIP (https://echa.europa.eu/de/scip-database database)

Substances of Concern In Products

• Which score does your product have?

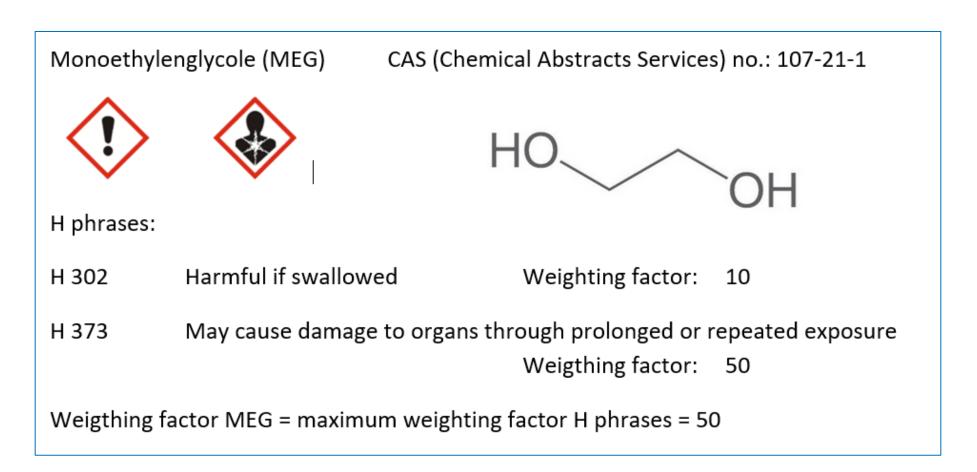


TOX-E: Problematic substances within the digital supply chain MEG equivalents: Weighting and aggregation

Challenge: Thousands of chemicals......

Reference substance: Monoethylenglycole

Weighting factors: based on



Öko-Institut e.V.

- hazard statements (H phrases) for substances classified as hazardous according to the Globally Harmonised System (GHS)
- Global Warming Potential

Unit: MEG equivalents (MEG eq.) (similiar to CO_2 equivalents)

TOX-E: Problematic substances within the digital supply chain MEG equivalents: Weighting and aggregation

TOX-E: Problematic substances within the digital supply chain MEG equivalents: Weighting factors / part 1

Global Harmonised System of Classification and Labelling of Chemicals

CLP Regulation: Classification, labelling and packaging of substances and mixtures TRGS 600 Substitution

Öko-Institut e.V.

Adverse effects on human health	Weighting factor	
H300: Fatal if swallowed	1,000	
H301: Toxic if swallowed	100	
H302: Harmful if swallowed	10	
H303: May be harmful if swallowed	5	
H304: May be fatal if swallowed and enters airways	1,000	
H305: May be harmful if swallowed and enters airways	5	

Öko-Institut e.V.

TOX-E: Problematic substances within the digital supply chain MEG equivalents: Weighting factors / part 2

Adverse effects on human health	Weighting factor	
H334: May cause allergy or asthma symptoms or breathing difficulties if inhale	d 500	
H335: May cause respiratory irritation	5	
H336: May cause drowsiness or dizziness	5	
H340: May cause genetic defects	50,000	
H341: Suspected of causing genetic defects	100	
H350: May cause cancer	50,000	