

Battling drought and desertification

Rajbir Singh FNAAS, FISA, FIAHS Indian Council of Agricultural Research, New Delhi

Drylands – a home of drought and desertification

- About <u>41% of land</u> area is drylands
- Within drylands
 - <u>42% is arid</u>
 - 37% is semi-arid
 - 21% dry subhumid

Some of the large arid regions of the world are:

Asia	Australia	Africa	North America	Central America	South America
The Middle East	Central Deserts	Sahara Desert	Parts of Western USA	The Pacific Coast	Atacama Desert
Indian or Thar Desert		Sahel	Sonoran Desert		Serrano of Brazil
Namib Desert		Kalahari			
Karakum					
Gobi					

Challenging features of drylands and arid regions

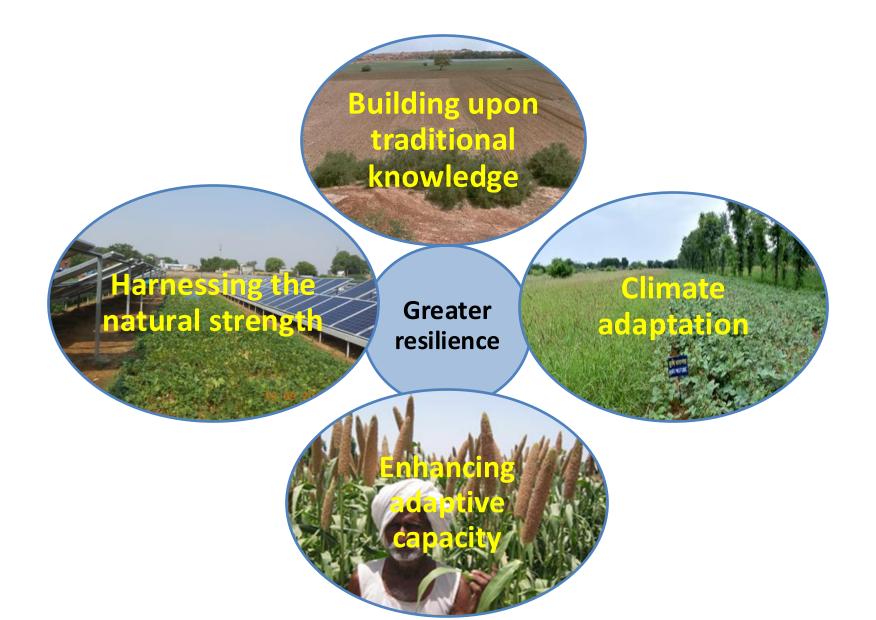
<u>Climatic stresses</u>

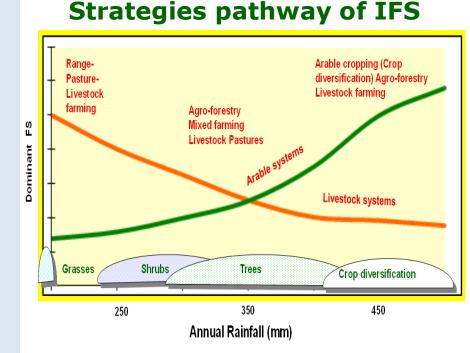
•Low & erratic rainfall (<450 mm, 40% CV)

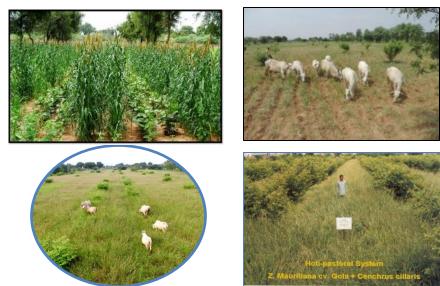
- •Temp. extreme (45-48°C; 0-4°C)
- Fragile resource base
 - Soils with low OC and Water Holding Capacity
 - Low water availability
- Demographic
 - More human and livestock pressure
 - Conflict with ecology
- Prone to desertification
- Agriculture/Farming
 - Inherent low productivity and highly risky
 - Favourable pockets scattered
- Vulnerability of arid regions to climate change

- Sensitivity index
- Exposure index
- Adaptive capacity
- Vulnerability index

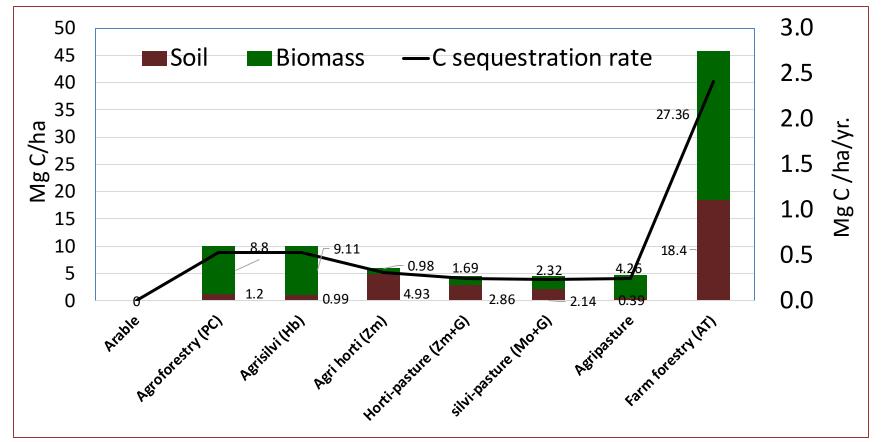
Distinct advantages of drylands


- <u>Adapted</u> plant and livestock species
- Rich <u>traditional</u> <u>knowledge</u> towards minimization of risk and conservation of resources
- High solar radiations
 5.6 kWh/m²/day
- Presence of manmade canals in arid areas


Four verticals for battling drought

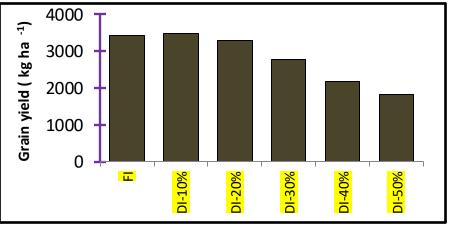


Building upon traditional knowledge


Integrated Farming Systems: Good for People and Planet

- To <u>widen</u> the base of commodities to <u>absorb</u> greater risk in farming (Annual Crops> Grasses> Shrubs> Trees> Livestock)
- To <u>meet</u> the year round food, fodder, fruit, fuel requirement
- <u>Combination</u> of annual and perennial components
- <u>Diversification</u> within each component
- Reduced climatic risk
- More income
- Better livelihood

IFS for Planet: Carbon Sequestration


- Over a period of 19 years Total C stock under arable cropping decreased by 0.72 Mg/ha
- Although biomass is the major C sink, agroforestry systems also sequestered C in soil both as SOC and SIC and was proportional to the litter fall and its decomposition rate.
- In farm forestry, higher tree density, no soil disturbance and higher leaf litter fall caused a higher C accumulation both in biomass and soil.

More Crop, Per Drop: Efficient irrigation

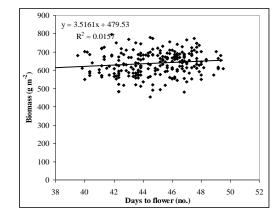
Micro-irrigation system

- <u>Sprinkler system</u> is suitable for undulated terrain
- <u>Drip system</u> is ideal for light textured soils, even moderately saline water may be used
- <u>Saves about 30% water</u> compared to check basin method
- <u>Deficit irrigation</u> @ 80% of FI save 1/5th water and had greater water productivity (16%) with acceptable yields (only 4% less)
- <u>Ex-situ and in-situ water</u> <u>harvesting</u>
 - Khadin (run-off farming)
 - Inter-row WH

Irrigation innovations from Bikaner (NW India)

Poogal, Bikaner

- In canal irrigated areas farmers/Govt. has constructed Diggies (water storage structures) e.g. 50m x 20m x 3m size
- The mode of irrigation is <u>micro-irrigation</u> operated by <u>solar panels</u>.
- Farmers mandatory contribution for solar panels is USD 875 and USD 4000 for diggies and remaining cost is borne by the govt.
- In case of diggies <u>Govt. reimbursed</u> the farmer contribution after 3 years.



Right choice of crops, cultivars and cropping systems

- <u>Matching the rainfall pattern of</u> the region and length of growing season (millets, legumes)
- Further choice of <u>cultivars</u>
- <u>Differential water requirement</u> of selected crops, cultivars and cropping systems
- <u>Further enhancing</u> climatic resilience
- <u>Shortening duration</u> of crops for enhanced adaptation

Enhancing Fodder Supply: Key to battling drought

- Participatory development of rangelands
- •New fodder crops:
 - Fodder beat gave a fresh fodder yield of 245 ton/ha
 Opuntia ficus-indica

cactus

•<u>Napier Pearl Millet Hybrid</u> <u>yield is 400 ton/ha</u> when planted at recommended planting spacing (75 cm x 60

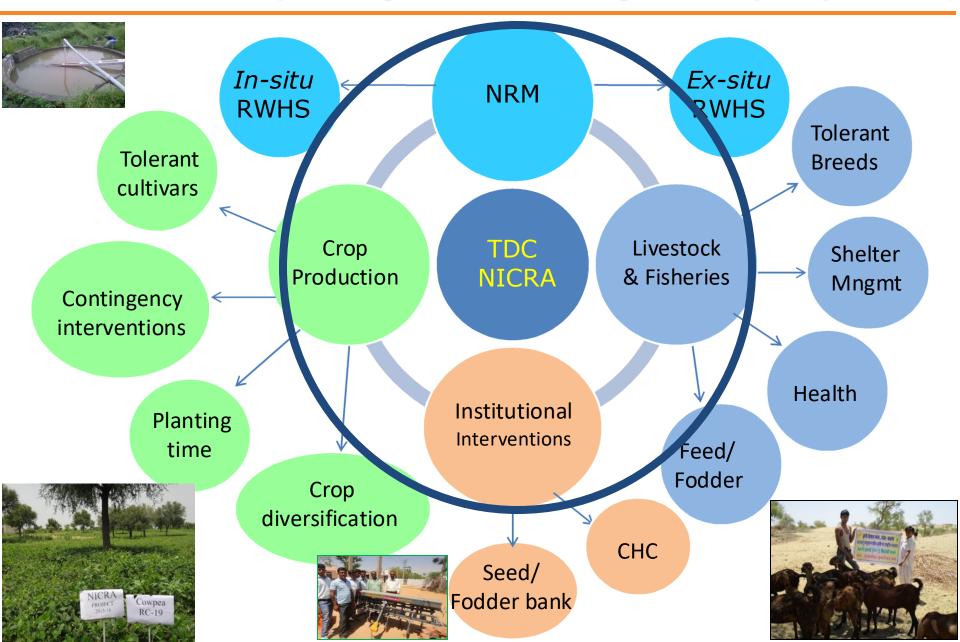
Green Energy: minimizing carbon footprint

 Agri-voltaic system – to amalgamate farming, electricity generation and water harvesting



- Supportive government policies (KUSUM)
- Use of <u>solar thermal</u> photovoltaic <u>devices</u> for water heating and cooking

Combating desertification


- Understanding the process and reasons of desertification
- Technological solutions (Sand dune stabilization)
 - Fencing
 - Fixing barriers
 - Afforestation
 - Planting of grass slips
 - Participatory approach (Continuous and proper management)
- Sand dunes cover reduced from 54% in 1990s to 48% to 2020.
- Sand dune stabilization technology spread in about 440,000 ha

Technology Demonstration Modules of NICRA

Demonstration of proven agricultural technologies developed by NARS

Empowering Farmers through DSS

- <u>Mitigation</u> of the adverse weather events
 - <u>Contingency planning</u> based on weather forecast
 - <u>Advisories</u>
 - Crop and cultivar selection
 - Re-sowing of crops
 - Fertilizer application
 - Spraying of pesticides
 - Weeding/thinning
 - Irrigation Scheduling
 - Harvesting
 - Diseases management

Way forward

- <u>Challenges</u> due to climate change are predicted to be further <u>intensified</u>
- <u>New opportunities</u> are emerging
- <u>Science-led solutions</u> to further enhance resilience
- Adequate <u>policy</u> and proper <u>implementation</u>

Thanks