

# **Telecom Infrastructure Sharing Best Practices.**

#### ITU Regional Workshop on Cost Models for Data Services and International Internet Connectivity

Dr Rajkumar Upadhyay, Chief Executive officer Centre for Development of Telematics (C-DOT)

8<sup>th</sup> April 2024

## The World is Going Digital



\* As of January 2024 - Source : DataReportal

सी-डॉट

- Digital Economy makes up 15% of the global GDP and Will grow tremendously and contribute 30% to the global GDP and 30 million jobs by 2030. (*source: Digital Cooperation organization, World Bank*)
- The global digital payment market is expected to grow manifold by 2025. In India alone During the month of March 2023, UPI accounted for 12.2 billion financial digital transactions with a total value of 18410.83 billion Rupees (220.7 Bn US\$) (*source*: NPCI)

#### Factors Aiding Digital Growth

High speed mobile networks like 4G, 5G and WiFi-6 Growing Penetration of Smartphones among Masses

Secured Telecom infrastructure





Major Enabling Factor



High Speed Internet

24\*7 Data Availability

## **Infrastructure Sharing**



Strategic arrangement where multiple operators share and utilize physical network components, such as towers, antennas, base stations, network components etc. to provide wireless/Data services.



#### **Key Benefits**

- ✓ Expand network coverage
- ✓ Reduction in Costs (CAPEX and OPEX)
- ✓ Reduction in the environmental impact of otherwise redundant infrastructure
- ✓ Improvement in Quality of Service (QoS)
- ✓ Services provided to more Consumers and underserved areas
- ✓ Faster collaborative rollout of new technologies like 5G.

**Example:** In areas with low population density, individual operators may find it financially unfeasible to deploy their own network infrastructure. Sharing resources, will help in collectively expand coverage and provide services

## **Passive Mobile Infrastructure Sharing**



- Passive Infrastructure Sharing: Sharing physical elements of the network that don't actively process or transmit signals. Examples include towers, poles, ducts, and shelters.
- Operators can avoid redundant construction efforts, reduce site acquisition and maintenance costs, and minimize environmental impact.

Source : GSMA Telecom Infrastructure Sharing



#### **Active Mobile Infrastructure Sharing**

Core

Network

Subscriber from

Network B

Network Roaming

Outside World

Subscriber from networl

B has roamed into coverage of operator A and is being

erviced by







Shared Core Network Elements and Platforms

Active Infrastructure
Sharing: sharing
network equipment and
components that
actively transmit and
process signals.

This includes sharing of base stations, Radios-BTS/eNodeB, gNodeB etc), transmission equipment, and backhaul networks.

*Figure : GSMA Telecom Infrastructure Sharing* 





#### **\*** MORAN (Multi-operator RAN):

- ✓ Infrastructure sharing by enabling multiple operators to share RAN elements.
- ✓ Standard architecture where the eNBs/gNBs etc. are shared, while the core network is proprietary to each network provider.
- ✓ With MORAN everything in the RAN (antenna, tower, site, power) except the radio carriers (frequency) is shared between two or more operators.
- ✓ Dedicated radio frequencies assigned to each Provider. Each carrier is independently configured and managed.

#### **\*** MOCN (Multi-operator core network):

- ✓ A form of RAN sharing where two or more core networks share same Radio Access network and a carrier (Also frequency sharing in addition to RAN sharing).
- ✓ One or more carriers are configured for frequency sharing. Operators share their cells physically and logically; in each cell, multiple Public Land Mobile Networks (PLMNs) are broadcasted
- ✓ MOCN is used when an operator A has a spectrum license, and the other operator does not have a spectrum license but would like to use the spectrum of operator A.



PLMN#2

Independent Cell Coverage

#### Source : GSMA

Operator PLMN #1

Shared Cell Coverage

PLMN #1 and

PLMN#2





# Core Network for UE camped to PLMN1 Operator 1 (PLMN 1) PLMN List in SIB PLMN 1 PLMN 2 Core Network for UE camped to PLMN2 Operator 2 (PLMN 2)

### **Mobile Virtual Network Operator**

OSS/

BSS

OSS/

BSS

- The MVNO model allows virtual operators to offer mobile services without owning network infrastructure.
- MVNOs lease network capacity from traditional MNOs.
- Utilizes existing network infrastructure, avoiding substantial capital investment.
- MVNOs don't have to deal with the significant infrastructure and operational costs associated with running a wireless network, whether it's fourth-generation (4G) or fifth generation (5G). Eg: they don't need to pay for radio frequency spectrum licenses and construct and maintain cell towers and other network hardware.
- Promotes competition, expands consumer choice, and potentially lowers service costs.



सी-डॉट



# Spectrum Sharing



- Spectrum Sharing : Multiple users or services to share the same frequency band within the radio frequency spectrum.
- ✓ Traditionally, spectrum allocation has been based on exclusive licensing.
- ✓ With increasing demand and limited availability, there's need of spectrum resource through sharing.
- ✓ Dynamic Spectrum Sharing (DSS) optimizes the use of available spectrum. Enables opportunistic access to spectrum bands that are not being used by their primary license holders at a particular time and location.
- ✓ Cognitive radio technology is often used in DSS systems to detect and exploit available spectrum opportunities while minimizing interference to licensed users.
- ✓ Licensed Shared Access (LSA): LSA allows licensed spectrum holders to share their allocated spectrum with other users or services under specific conditions.
- ✓ Reduced Costs and Efficient Resource Utilization
- ✓ Usage of legacy networks (e.g., 2G, 3G) alongside 4G/5G. As revenues decline for legacy networks, sharing infrastructure helps operators maintain service quality while minimizing costs. (New Service Operators can share legacy networks with existing players.)

## **Dynamic Spectrum Sharing (DSS)**





With the DSS technology, 5G networks can be rapidly deployed without affecting 4G user experience, effectively improving spectrum efficiency and meeting different service requirements of both 4G and 5G users

#### **Network Resource Sharing Model**



Source : GSMA

#### **Global Trend : Sharing becoming more common**

सी-डॉट ODT



Source : Mckinsey

#### **Expected Cost Reduction by 40% in 5G networks**

#### 35% Annual traffic growth assumed

#### **Access network TCO<sup>1</sup> evolution**



Source : Mckinsey

सी-डॉट

C-DOT

#### Network sharing is a lever that can reduce ~40% the cost of 5G related access network domains (small cells and 5G macro layer)

#### **Infrastructure Sharing : Best Practices**

#### **Some Best Practices for Efficient Network Infrastructure Sharing:**

- ✓ Adoption of Cloud Native Architecture
- ✓ Radio Access Network Slicing (RAN-Slicing)
- ✓ Usage of Radio Access Network Analytics (RAN-Analytics)
- ✓ Radio Access Network Optimization
- ✓ Cloud Radio Access Network (RAN) Sharing
- ✓ Usage of Self Optimizing Networks for optimum Resources Utilization



#### **Cloud RAN and RAN-Slicing**

- Adoption of a Cloud-native RAN Architecture, that leverages the advantages of cloud computing, such as scalability, flexibility, automation, and resilience.
- Cloud RAN reduce capital and operational expenditures, as well as simplify network management
- Cloud-native RAN also enables open and interoperable interfaces and components, which can reduce vendor lock-in and increase innovation.



- RAN Slicing: Ability to create and manage multiple logical networks on the same physical infrastructure, each with different service levels and characteristics.
- RAN slicing can help optimize network utilization and performance, as well as offer customized and differentiated services to different customers and applications.
- Reduce network complexity and overhead.

## **Best Practices: Implement RAN Analytics**

- Analytics: Analytics tools collect and analyse data from the RAN to optimize network performance, predict failures, and identify opportunities for improvement.
- Use of RAN data and artificial intelligence to monitor, analyze, and improve network behavior.
- RAN analytics can help gain insights into network status, trends, and issues, as well as identify and solve problems before they affect customers.
- RAN analytics can also help automate network operations and maintenance, as well as optimize network planning and design.
- Sharing anonymized analytics data between operators and vendors facilitates collaborative optimization efforts, enhances network efficiency,





## **Best Practices : RAN Optimization and Sharing**





- RAN optimization: Improving the quality and efficiency of the network by using techniques, such as load balancing, interference management, traffic shaping, and power control.
- ✓ enhance network capacity and coverage,
- ✓ reduce network congestion and latency.

- Adopt Cloud RAN sharing which is the collaboration between operators to share resources, such as spectrum, sites, equipment, and backhaul typically hosted on a cloud infrastructure
- ✓ reduce network deployment and operation costs, increase network quality.

# Self-Optimizing Networks



Dynamically adjusting and enhancing network performance without human intervention

Self-Optimizing Networks contributes to efficient infrastructure sharing using predictive AI for optimum resources allocation between multiple operators. This results in :

- Improved Efficiency: SON algorithms continuously monitor network conditions and traffic patterns, optimizing parameters like signal strength, bandwidth allocation, and routing configurations in real-time, leading to more efficient resource utilization
- Enhanced Quality of Service (QoS): Automatically minimizes issues such as dropped calls, slow data speeds, and network congestion, leading to a better user experience for all stakeholders.
- Cost Optimization: Reduce CAPEX by efficiently utilizing existing infrastructure and resources, infrastructure sharing for all parties involved
- Dynamic Adaptation to Changes: Dynamic allocation of resources with fluctuating demands and network conditions. Adapt in real-time ensures that the network remains resilient and responsive to changes, maintaining optimal performance under varying circumstances.

#### Conclusion



- Telecom infrastructure sharing helps operators to improve efficiency, reduce costs, and accelerate network deployment by sharing network infrastructure between multiple operators.
- It also helps in expanding network coverage, Improvement in Quality of Service (QoS) and reduction in the environmental impact of otherwise redundant infrastructure
- Sharing Infrastructure between operators is increasing globally at a good rate and helps achieve overall cost reduction of up to 40% in tech like 5G.
- In 5G Era and beyond with adoption of technologies like cloud Infra and usage of AI, it will become less complex for operators to share infrastructure and maintain Healthy SLAs
- Adopting cloud-native technologies will enable network programmability, automation, and efficient orchestration of services
- Using Self optimizing networks would result in Dynamic allocation of resources with fluctuating demands and network conditions in real-time.
- Using Dynamic Spectrum Sharing, RAN Slicing , RAN Optimization would result in in even more efficient Infra Sharing between operators.





Centre for Development of Telematics (C-DOT), Ministry of Communications, Govt of India, C-DOT Campus, Mandi Road, Mehrauli Delhi -110030 Website: <u>www.cdot.in</u>

# Thank You