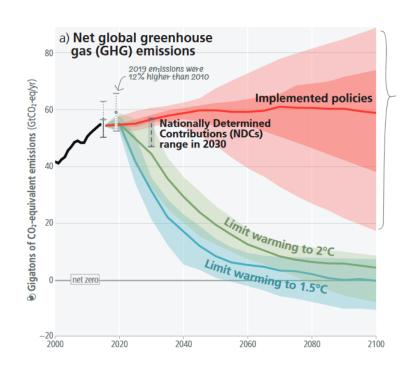
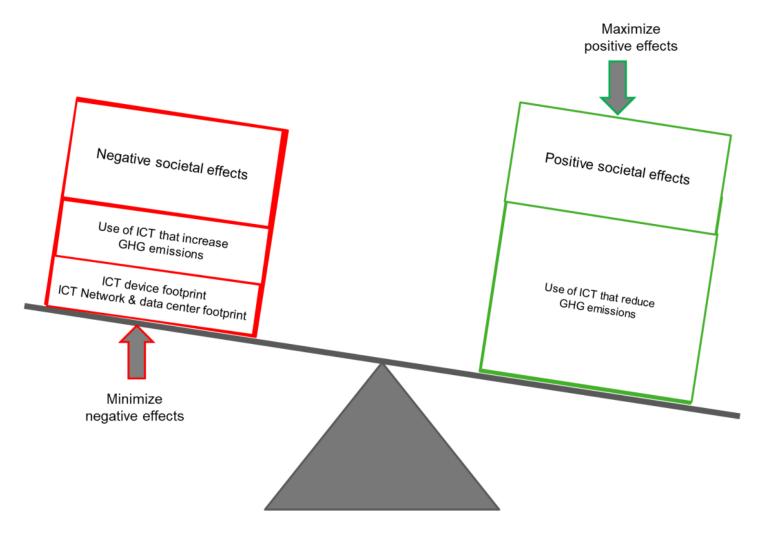
Workshop on the Role of ICTs Standards for Circular Economy and GHG Emissions Reduction

ICTs and the 1.5 degree challenge

Jean-Manuel Canet, Vice-Chairman ITU-T SG5


- Context
- The double-edged nature of ICT
- The L.1400 series
- Decarbonizing the sector at the right speed
- Database on GHG emissions
- Allowing other sectors to decarbonize
- Main Take-aways

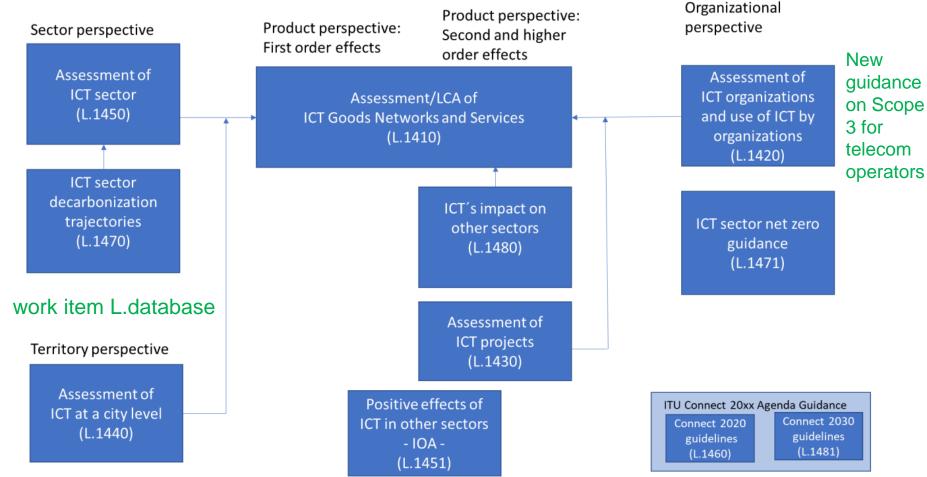
Context: A rapid decrease in GHG emissions is necessary to keep global temperature increase below 1.5°C



Source: AR6 summary for policymakers

The ICT sector has to reduce its greenhouse gas emissions by 45 per cent by 2030, stated the ITU in 2020

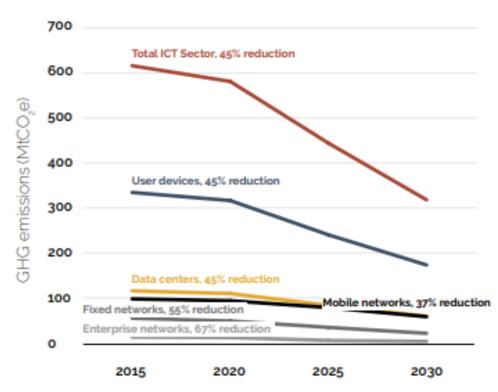
The Double-Edge Nature of ICTs



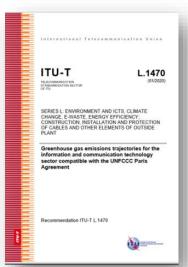
Source: Bergmark, Coroama, Kamiya, Masanet 2021

Enabling the Net Zero Transition

L.1400-series overview


Setting 1.5°C Trajectories for the ICT sector

ICT Sector emissions trajectories 2015-2030 (with percent reductions from 2020 to 2030)



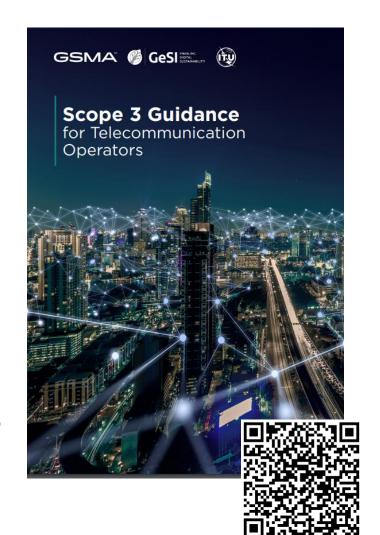
Several steps to decarbonize ICT activities

- 1. Assess baseline
- 2. Set medium term and long-term targets
- 3. Elaborate a reduction plan
- 4. Implement it / adjust it

Overview of Scope 3 guidance document and key messages

Scope 3 emissions cover a wide range of economic activities that are divided into 15 Categories.

Estimating Scope 3 emissions is difficult since this refers to emission sources outside a company's direct control.


The document establishes guidance to harmonize methods for telecommunication operators to assess and report their Scope 3 Greenhouse Gas (GHG) emissions, and to increase coverage and transparency.

This guidance prioritises in particular:

- Categories 1-2 and 11 (which address the life cycle impact of companies' portfolios),
- Categories 8 and 13, related to leased assets
- Category 3 (which is closely linked to Scope 1 and 2),

...although all Categories are addressed.

This document is intended to supplement, not supersede, existing standards.

Descriptions

Goal is reduction

Estimating emissions should be used to drive reduction efforts

Hot-spotting

Focus time and effort on largest emission sources

Keep it simple

 Use the simplest approach that will give required accuracy and best support reduction goals

Guiding **Principles**

Scale

Covering more emissions can help with business decisions

Improve accuracy over time

Data availability and quality are improving each year

Suitable for all

Approaches for both beginners and those more advanced

Follow sciencebased principle

• Related to Net Zero standards from ISO [b-ISO 14064-1] or the Science Based Targets Initiative [b-SBTi] or ITU-T Recommendations [b-L.1470] and [b-L.1471]

Focus on mitigation Carbon offsets, whether purchased by the telecommunication operator or a supplier/customer shall not be considered as a valid means of reducing CO2e inventories. www.itu.int 9

Reduce emissions sufficiently quickly: some examples

CATEGORIES:

OPERATING ENERGY-EFFICIENT NETWORK

- 1. Multiple power saving features
- 2. Alternative energy supply
- 3. Consolidation and virtualization
- 4. Free cooling and location optimization

EFFICIENCY IN BUILDINGS AND SERVICES

- 5. Monitoring solutions for efficient buildings
- 6. Focus on energy conservation measures
- 7. Alternative mobility concepts
- 8. Videoconferencing and audioconferencing

ALTERNATIVE ENERGY

- 9. Self-production of renewable energies
- 10. Purchasing renewable energy the certificate of origin and PPA
- 11. Energy supply innovation

APPLICATION OF THE CIRCULAR ECONOMY PRINCIPLES

- 12. Eco-design of products and services
- 13. Reuse of network equipment
- 14. Optimizing the life cycle and end-of-life of customer products and services
- 15. Selling repairable products

L.1470(20)_F16

Can ICT solutions reduce emissions in other sectors?

L.1480 provides a structured methodological approach, that aims to improve consistency, transparency and comprehensiveness of assessments of how the use of ICT solutions **impact GHG emissions over time**.

International Telecommunication Union
Standardization Sector

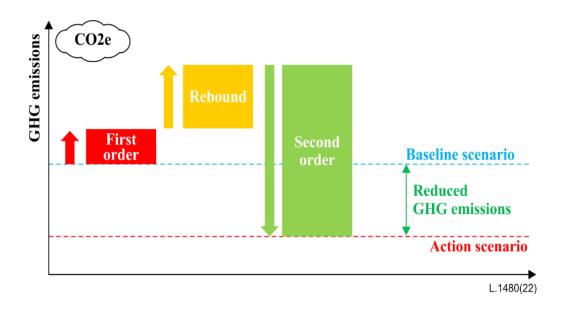
Recommendation

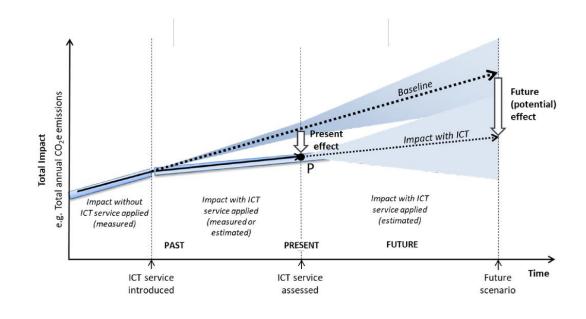
ITU-T L.1480 (12/2022)

SERIES L: Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant

Assessment methodologies of ICTs and CO2 trajectories

Enabling the Net Zero transition: Assessing how the use of information and communication technology solutions impact greenhouse gas emissions of other sectors


Some example of ICT solutions


Sector	Solution	Mechanism
Energy supply	Improved metering and forecasting of	Optimization
transformation and	electricity supply and demand	
consumption	Optimization of grids, including load balancing	Optimization
	through demand response	
	Improved energy system through demand	Optimization
	side management	
Industry	As-a-service and sharing solutions	Optimization and/or substitution
	Circularity	Optimization
	Production efficiency	Optimization
Buildings	Intelligent building energy and resource	Optimization
	management	
	Optimized use and sharing of buildings	Optimization and/or substitution
Transport	Virtual meetings	Substitution
	Remote work	Substitution
	Route optimization	Optimization
	Fleet management and logistics	Optimization
	Ecodriving	Optimization
	Shared mobility	Optimization and/or substitution
Agriculture and	Precision agriculture	Optimization
forestry	Precision forestry	Optimization
Nature-based sinks	Forest protection	Providing information and managing data
		Facilitation, accessibility, affordability and
		rising motivation

Digital
education and
training for all
sectors
allowing a
quicker and
more efficient
transition

Reskilling and Upskilling

The effects considered in L.1480

Consider different effects positive and negative

Different scenarios considered

L.database, under preparation

This Recommendation provides guidance to support the creation of an ITU database on GHG emissions of the Global ICT sector at world-wide level and at a national level.

The guidance is intended to support ITU in establishing such a database and to support national regulators in establishing national collection of data related to GHG emissions of the ICT sector.

It is elaborated in cooperation with ITU-D and UNFCCC

Target date for consent: March 2024

Your contributions are welcome!

Main Take Aways

ICT, unlike many other products and services, distinguishes itself by its double-edged nature, contributing both to environmental loads and emissions reduction opportunities.

The ITU-T Study Group 5 has developed a series of Recommendations to assess the environmental impact of ICT incl.:

> L.1470 on 1.5°C GHG trajectories

L.1471 on Net Zero for ICT sector organizations

L.Database under development

The Recommendation ITU-T L.1480 provides a methodology to comprehensively assess the impacts of ICT solutions in other sectors and enable the net zero transition.

Thank you very much!

Additional Resources

- ITU climate change: https://www.itu.int/en/ITU-T/climatechange/Pages/default.aspx
- <u>ITU-T Study Group 5</u>: EMF, environment, climate action, sustainable digitalization, and circular economy
- ITU-T L. 1480 Enabling the Net Zero transition: Assessing how the use of ICT solutions impacts GHG emissions of other sectors
- <u>ITU-T L.1470</u> Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement
- <u>L.Suppl.37</u> Guidance to operators of mobile networks, fixed networks and data centres on setting
 1.5°C aligned targets compliant with Recommendation ITU-T L.1470
- <u>L.Suppl.38</u> ITU-T L.1470 Guidance to information and communication technology manufacturers on setting 1.5°C aligned targets compliant with Recommendation ITU-T L.1470
- <u>ITU-T L.1471</u> Guidance and criteria for information and communication technology organizations on setting Net Zero targets and strategies