Software Supply Chain Risks That May Need to be Addressed

MITRE’s System of Trust™

Robert Martin
Senior Software and Supply Chain Assurance Principal Engineer
Cyber Solutions Innovation Center
MITRE Labs

Presenting at the ITU Workshop on “Zero Trust and Software Supply Chain Security”
Session 2: Need, security issues, threats and controls for software supply chain security.
Software Supply Chain Attack (a.k.a SolarWinds)

1. Preparatory compromises at SolarWinds date back to October 2019. (Refs 11 & 12)
2. At some point there was a compromise of the build environment itself.
3. Malicious code sent in SolarWinds updates released between March and at least June 2020. (Refs 32 & 33)
4. Approximately 18,000 organizations receive the tainted updates and may have been targeted and impacted.
Software Supply Chain Integrity

Evidence Based Trust

Secure & Hardened Build and Distribution Infrastructure

Code -> Commit -> Build -> Test -> Package -> Release

Deploy -> Operate -> Monitor

Producer

Consumer

© 2023 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case No: 23-01614-17
Software Supply Chain Integrity, Transparency & Trust

Software Supply Chain Risks (Hazards and Threats)*

Threat List Sources:
- Supply-chain Levels for Software Artifacts (SLSA), https://slsa.dev/spec/v1.0/threats-overview
- Taxonomy of Attacks on Open-Source Software Supply Chains (SoK), 2023 IEEE Symposium on Security and Privacy - DOI: 10.1109/SP46215.2023.10179304
- Uncovering Software Supply Chains Vulnerability: A Review of Attack Vectors, Stakeholders, and Regulatory Frameworks, DOI: 10.1109/COMPSAC57700.2023.00281

* See MITRE’s System of Trust repository of potential supply chain risks (SoT.MITRE.ORG)
System of Trust (SoT)
“What Supply Chain Risks to Manage?”

SoT - a strategic, widely-adoptable, holistic, data-driven analysis platform to assess supply chain security risks

Address Chaos, Align & Organize
Simplify, Tailor & Use
Basis of Trust

Trust Aspects

Risk Categories

- (RC-13) Supplier Financial Stability Risks
- (RC-76) Supplier Organizational Security Risks
- (RC-4) Supplier Susceptibility
- (RC-20) Supplier Quality Culture Risks
- (RC-105) Supplier Organizational Effectiveness Risks
- (RC-7) Supplier Ethical Risks
- (RC-6) Supplier External Influences

RC-201 Supply (product) Quality Risks

RC-213 Supply (product) Security Risks

RC-214 Supply (product) Resilience Risks

Risk Categories

- (RC-21) Supply Malicious Taint
- (RC-9) Supply Counterfeit
- (RC-8) Supply Hygiene Risks

Risk Categories

- (RC-518) Software supply (product) security process risks
- (RC-519) Software supply (product) security requirements risks
- (RC-520) Software supply (product) architecture and design security risks
- (RC-521) Software supply (product) coding language risks
- (RC-522) Software supply (product) code analysis risks
- (RC-523) Software supply (product) security testing risks
- (RC-524) Software supply (product) secure build risks
- (RC-525) Software supply (product) secure integration and deployment risks
- (RC-526) Software supply (product) secure update risks
- (RC-527) Software supply (product) pedigree and provenance risks
- (RC-528) Third party supply (product) component risks

Risk Categories

- (RC-287) Service Quality Risks
- (RC-289) Service Resilience Risks
- (RC-286) Service Security Risks
- (RC-288) Service Integrity Risks

Risk Categories

- (RF-113) Software supply (product) includes components that were known to have exploitable vulnerabilities at the time it was in development
- (RC-529) Open source software risks for software supply (product)
- (RF-743) Insufficient security vetting of third party software supply (product) components
MITRE Supply Chain Security System of Trust Risk Areas

<table>
<thead>
<tr>
<th>(RC-1) Supplier Risks</th>
<th>(RC-2) Supply Risks</th>
<th>(RC-3) Service Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RC-20) Supplier Quality Culture Risks</td>
<td>(RC-6) Supply Management Integrity Risks</td>
<td>(RC-301) Service Specific Security Risks</td>
</tr>
<tr>
<td>(RC-105) Supplier Organizational Effectiveness Risks</td>
<td>(RC-10) Supply Chain Marine Integrity Risks</td>
<td>(RC-302) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-4) Supplier Ethical Risks</td>
<td>(RC-12) Supply (Product) Quality Risks</td>
<td>(RC-303) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-10) Supplier External Influences</td>
<td>(RC-15) Supply Chain Manufacuring Integrity Risks</td>
<td>(RC-304) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-21) Susceptibility to Supply Chain Higeine Risks</td>
<td>(RC-22) Unsanctioned Manufacturing</td>
<td>(RC-305) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-150) Functional Integrity Risks</td>
<td>(RC-202) Supply (Product) Quality Risks</td>
<td>(RC-311) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-120) Corporate Manufacturing</td>
<td>(RC-203) Supply (Product) Quality Risks</td>
<td>(RC-312) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-204) Logistics/Transportation Integrity Risks</td>
<td>(RC-204) Supply (Product) Quality Risks</td>
<td>(RC-313) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-205) Poor Reputation for Integrity</td>
<td>(RC-205) Supply (Product) Quality Risks</td>
<td>(RC-314) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-206) Facilities Integrity Risks</td>
<td>(RC-206) Supply (Product) Quality Risks</td>
<td>(RC-315) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-54) Packaging Integrity Risks</td>
<td>(RC-207) Supply (Product) Quality Risks</td>
<td>(RC-316) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-208) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-317) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-318) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-318) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-320) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-319) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-322) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-320) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-324) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-321) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-326) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-322) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-328) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-323) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-330) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-324) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-332) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-325) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-334) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-326) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-336) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-327) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-338) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-328) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-340) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-329) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-342) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-330) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-344) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-331) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-346) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-332) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-348) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-333) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-350) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-334) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-352) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-335) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-354) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-336) Service Specific Reliability Risks</td>
</tr>
<tr>
<td>(RC-356) Supply Infrastructure Pedigree Risks</td>
<td></td>
<td>(RC-337) Service Specific Reliability Risks</td>
</tr>
</tbody>
</table>

* Supply Chain Security Top 75 Risk Areas Levels 1-3
** System of Trust Expanding to Pharma, Food, and other types of Products

MITRE's Supply Chain Security System of Trust™ https://sot.mitre.org/

© 2023 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case No: 23-01614-17
14 top-level risk categories
214 detailed risk categories
642 specific measurable risks
SBOM Definition

NTIA Minimal Elements (EO 14028)

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier Name</td>
<td>The name of an entity that creates, defines, and identifies components.</td>
</tr>
<tr>
<td>Component Name</td>
<td>Designation assigned to a unit of software defined by the original supplier.</td>
</tr>
<tr>
<td>Version of the Component</td>
<td>Identifier used by the supplier to specify a change in software from a previously identified version.</td>
</tr>
<tr>
<td>Other Unique Identifiers</td>
<td>Other identifiers that are used to identify a component, or serve as a look-up key for relevant databases.</td>
</tr>
<tr>
<td>Dependency Relationship</td>
<td>Characterizing the relationship that an upstream component X is included in software Y.</td>
</tr>
<tr>
<td>Author of SBOM Data</td>
<td>The name of the entity that creates the SBOM data for this component.</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Record of the date and time of the SBOM data assembly.</td>
</tr>
</tbody>
</table>

Minimum Elements

<table>
<thead>
<tr>
<th>Data Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document baseline information about each component that should be tracked: Supplier, Component Name, Version of the Component, Other Unique Identifiers, Dependency Relationship, Author of SBOM Data, and Timestamp.</td>
</tr>
</tbody>
</table>

Automation Support

Support automation, including via automatic generation and machine-readability to allow for scaling across the software ecosystem. Data formats used to generate and consume SBOMs include SPDX, CycloneDX, and SWID tags.

Practices and Processes

Define the operations of SBOM requests, generation and use including: Frequency, Depth, Known Unknowns, Distribution and Delivery, Access Control, and Accommodation of Mistakes.

SPDX (Linux Foundation - Free ISO/IEC 5952:2022)

CycloneDX (OWASP Project)

SWID
From the Community-led Working Group on SBOM Tooling and Implementation, facilitated by Cybersecurity and Infrastructure Security Agency [cisa.gov/sbom]

<table>
<thead>
<tr>
<th>SBOM Type</th>
<th>Definition</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>SBOM of intended design of included components (some of which may not exist) for a new software artifact.</td>
<td>Typically derived from a design specification, RFP, or initial concept.</td>
</tr>
<tr>
<td>Source</td>
<td>SBOM created directly from the development environment, source files, and included dependencies used to build an product artifact.</td>
<td>Typically generated from software composition analysis (SCA) tooling, with manual clarifications.</td>
</tr>
<tr>
<td>Build</td>
<td>SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or package) from data such as source files, dependencies, built components, build process ephemeral data, and other SBOMs.</td>
<td>Typically generated as part of a build process. May consist of integrated intermediate Build and Source SBOMs for a final release artifact SBOM.</td>
</tr>
<tr>
<td>Analyzed</td>
<td>SBOM generated through analysis of artifacts (e.g., executables, packages, containers, and virtual machine images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be referred to as a “3rd party” SBOM.</td>
<td>Typically generated through analysis of artifacts by 3rd party tooling.</td>
</tr>
<tr>
<td>Deployed</td>
<td>SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that combines analysis of configuration options, and examination of execution behavior in a (potentially simulated) deployment environment.</td>
<td>Typically generated by recording the SBOMs and configuration information of artifacts that have been installed on systems.</td>
</tr>
<tr>
<td>Runtime</td>
<td>SBOM generated through instrumenting the system running the software, to capture only what is loaded and executing in memory, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred to as an “Instrumented” or “Dynamic” SBOM.</td>
<td>Typically generated from tooling interacting with a system to record the artifacts present in a running environment and/or that have been executed.</td>
</tr>
</tbody>
</table>
Software Bill of Materials Types

Source SBOM

- Open source components
- Developed components
- Purchased components

Build SBOM

- Build process
- Libraries
- Build Tools
- Makefiles
- Generated code
- Other documents: Multimedia, text

Target Images

- Micro Controller Firmware
- Disk Images
- Virtual Machine Images
- Container Images
- Package Feeds
- SDKs & Build Tools

Execution

- Dynamic libraries
- External executables

Data to address some SLSA Threats

Deployed SBOM

MITRE

© 2023 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case No: 23-01614-17

13
Software Supply Chain Integrity, Transparency & Trust

Example of the IETF SCITT in SW Development

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source SBOM</td>
</tr>
<tr>
<td>Build SBOM</td>
</tr>
<tr>
<td>Deployed SBOM</td>
</tr>
<tr>
<td>SLSA Data</td>
</tr>
</tbody>
</table>

Policy Gates

Signed Evidence

Example evidence: Commit signature proof
Example evidence: Build trigger record
Example evidence: Build parameters
Example evidence: Source SBOM signed by expected provider
Example evidence: Build SBOM
Example evidence: Deployed SBOM
Example evidence: SAST/CIAS/scan results
Example evidence: Fuzz test results
Example evidence: Release approval
Example evidence: Release completion

Example policy: Source SBOM matches published package
Example policy: Build SBOM matches deployed SBOM
Example policy: Build configuration acceptable
Example policy: No known unmitigated vulnerabilities
Example policy: Release approved
Example policy: Build output SBOM matches deployed SBOM

Vendor’s SCITT Registry

Policy Entries

Evidence Entries

SW Parts & Tooling Ecosystem
Software Product Ecosystem
Edge Ecosystem

Traceable Value Chain

Code Repositories
Development Tool
Creation & Sourcing
Auto Supply Chain Integrity, Transparency & Trust

Automotive Supply Chain Risks (Hazards and Threats)*

* See MITRE’s System of Trust repository of potential supply chain risks (SoT.MITRE.ORG)
Auto Supply Chain Integrity, Transparency & Trust

Manufacturing Ecosystem

Automotive Ecosystem

IoT Ecosystem

Example policy:
- Parts are untainted during shipment
- Parts made to specification
- Parts from legitimate producer

Example policy:
- Sub-assemblies are undamaged during shipment
- Sub-assemblies made to specification
- Sub-assemblies from legitimate producer
- Sub-assemblies conform to HBOM
- HBOM signed and unaltered

Example policy:
- Approved by quality inspector
- Build output BOM matches design specification
- Tooling within configuration norms
- No known unmitigated flaws
- Meets functional testing

Policy Gates

Signed Evidence

Example of the IETF SCITT in the Automotive Industry

© 2023 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case No: 23-01614-17

MITRE

Vendor's SCITT Registry

Evidence Entries
Smart Supply Chain Integrity, Transparency & Trust

Supply Chain Risks (Hazards and Threats)*

* See MITRE’s System of Trust repository of potential supply chain risks (SoT.MITRE.ORG)
Takeaways and Conclusions

- Software exists as a standalone item and as an embedded capability
- Addressing the software supply chain must align and integrate with the other aspects of smart device supply chains.
- Trust, visibility, and integrity needs to be conveyable across all supply chains.
- Assurance is specific to an item and its use in an environmental / business context.
- Automation is critical to gaining and conveying assurance.
- Broadly utilized standards for assurance attestations, BOMs, integrity, vulnerabilities, weaknesses, and risks are needed

Suggestions for SG17

- Consider making automation guidelines for showing how evolving freely available standardization efforts* across the globe can be used to capture and convey assurance attestations using BOMs and other build claims / statements across supply chains for smart devices and standalone software against appropriately tailored sets of risks for the different environmental / business contexts.

* ISO/IEC 5962 & 5055 (free versions), IETF SCITT, MITRE System of Trust, ITU-T CYBEX (X.1500, X.1520, X.1521, X.1524, X.1525, X.1528), ETSI TR 103 305 (1-4), ETSI TR 103 306, etc.
System of Trust and IETF SCITT

- **MITRE’s System of Trust - SoT.MITRE.ORG**
 - Contact - SOT@mitre.org

- **SCITT IETF Working Group** - focused on specification development. Charter and Meeting schedule outlined by the IETF: https://datatracker.ietf.org/wg/scitt/about/
 - IETF 118 (Prague) SCITT Session is planned for Thursday 9 Nov. from 9:30-11:30am

- **SCITT Community** - focused on IETF specification adoption https://github.com/ietf-wg-scitt/ including advocacy, outreach, testing, ensuring interoperability of implementations, rapid prototyping, and open source libraries, tooling and examples, like the SCITT API Emulator https://github.com/microsoft/scitt-api-emulator, and View COSE tool https://v.glucose.org/.
 - The **SCITT Community** is open to the public and new members are invited to join!