
SBOM Technology Development and Challenges
for Securing Software Supply Chains

ITU Workshop, August 28, 2023

Prof. Heejo Lee

Dept. of Computer Science and Engineering

Korea University

(heejo@korea.ac.kr)

This is a joint work with Yoonjong Na.

mailto:heejo@korea.ac.kr

About Speaker

2

Heejo Lee at Korea University
(heejo@korea.ac.kr)

• Professor, Dept. of Computer Sci. and Eng., Korea Univ. (2004-present)

• Director, Center for Software Security and Assurance (CSSA) (2015-present)

• Co-CEO, Labrador Labs, Inc. (CSSA Spin-off since 2018)

• Visiting Professor, CyLab/CMU (2010-2011)

• CTO, AhnLab Inc. (2001-2003)

• Editor, IEEE Trans. on Vehicular Technology, and Journal of Comm. and Networks

• ISC2 ISLA award winner of community service star in 2016

• Postdoc researcher, CERIAS at Purdue University (2000-2001)

• BS, MS, PhD from POSTECH, Korea (1989-2000)

• PI, “Development of SBOM Technologies for Securing Software Supply

Chains”, MSIT/IITP, Korea, 2022-2025

mailto:heejo@korea.ac.kr

SBOM Overview

3

▪ SW supply chains rely on OSS ecosystems
OSS (open source software) commonly reused by other OSS

▪ Dependency problem in OSS reuses
Delayed updates of reused OSS result in vulnerability propagation

▪ Common attack surface of supply chain attacks
Increase in frequency and patterns of supply chain attack

Increase of supply chain attacks Why we need SBOM

▪ Software Bill of Materials (SBOM)
A statement of SW components including reused OSS

▪ Advantages of SBOM management
Provide transparency of SW supply chains

▪ US EO and EU CRA include SBOM regulations
A project launched for developing SBOM technologies in Korea

“EU Cyber Resilience Act”

(EU, 2022)

“US Executive Order”

(US, 2021)

“Supply chain attack increase 742%”

(Sonatype, 2022)

“Development of SBOM Technologies”

(KR, 2022-25)

Challenges in SBOM Generation: Accuracy

▪ Source code – Detection of reused OSS is challenging due to partial reuse and modification of OSS

▪ Binary code – Detection of reused OSS is challenging due to diversity of compile environments

Difficulty of generating precise SBOM

Binary – various compile environments
make OSS detection difficult

Source – modification of OSS makes accurate
component detection difficult (CENTRIS, ICSE 2022) 4

Challenges in SBOM Management: Exploitability

▪ SBOM allows to recognize vulnerable components, by the use their name and version

However, version-based vulnerability detection (SBOM analysis) yields 77% false positives (V1scan; USENIX Security’23)

▪ The exploitability of each vulnerability found is very hard to be determined in a systematic way

Exploitability of vulnerabilities

“V1SCAN: Discovering 1-day Vulnerabilities in Reused

C/C++ Open-source Software Components Using Code

Classification Techniques“ (USENIX Security, 2023)

“CENTRIS: A Precise and Scalable Approach for

Identifying Modified OSS Reuse“ (ICSE, 2021)

“VUDDY: A Scalable Approach for Vulnerable

Code Clone Discovery“ (IEEE S&P, 2017)

5

HatBOM: An Automated SBOM Tool in the IoTcube Platform

• HatBOM: The SBOM Caring Hat (developed by CSSA, Korea University)
• A collective tool of SBOM operations, which are available at https://iotcube.net

• HatBOM provides operations of build, view, translate, merge, diff, and validate,
which cover most SBOM operations (7 out of 9) proposed by NTIA SBOM Tool Taxonomy

• Top 6 SBOM tools in GitHub star ranks were compared with HatBOM

• https://github.com/awesomeSBOM/awesome-sbom

6

SBOM Tool
F1

(Build)
F2

(Analyze)
F3

(Edit)
F4

(View)
F5

(Diff)
F6

(Import)
F7

(Translate)

F8
(Merge)

F9
(Tool Support)

bomber (DFKM) C, S C, S

MS SBOM Tool S

Syft C, S C, S C, S

Tern C, S

Aqua Trivy C, S C, S C, S

CycloneDX CLI C C C, S C

HatBOM Δ C, S C, S C C, S C, S C Δ

NOT
SUPPORTED

C: CycloneDX SBOM

S: SPDX SBOM

Δ: To be supported

https://github.com/awesomeSBOM/awesome-sbom

How HatBOM works
• IoTcube Hatbom for SBOM operations with Redis 6 and Redis 7

7

1. How to describe dependencies

▪ Dependencies among reused components are complicated and even nested

▪ Minimizing SBOM by only showing top-level and modified components can improve readability

Standard status

Ref for zlib
SBOM

snappy

MongoD
B

Dependency
Changed Dependency

Actual Dependency of MongoDBExpected dependency of MongoDB

zlib

snappy

MongoDBInternal

External

Internal

zlib

Other Nested
Components

Ref for SBOM

8

2. How to store the compile environments

▪ SPDX currently provides very few features for binary SBOM

▪ Even in the same source code, different output will come in a different compile environment

Standard status

▪ We are studying on additional fields that can help component detection in binary SW

▪ Unit for binary analysis of OSS components

▪ Provisioning compile environments such as compiler, options and build environments

▪ Describing component version of binary files

Countermeasures

9

3. How to verify the non-existence of vulnerabilities

▪ Vulnerability databases (NVD, Google OSV, GSD) do not provide sufficient information

▪ Common vulnerability database like STIX™ 2.1, MITRE CVE and NVD provide vulnerability
information, but insufficient for verifying the existence of the vulnerability in the target software

▪ The hash values of vulnerable and patched functions will help to determine the existence
of the vulnerability in the software

Standard status

Additional fields for vulnerability databases

Field Description Required

N1 Vulnerability origin software name The software name where vulnerability is first discovered Required

N2 The version of the origin software The version the of origin software where vulnerability is first discovered Required

N3 Vulnerable file/function source code The source code of the function containing vulnerability (e.g., Github link) Optional

N4 Vulnerable file/function hash value The hash value of a file or function containing the vulnerability Required

N5 Vulnerability exploit approach The description for exploiting the vulnerability (e.g., PoC) Optional

N6 Vulnerability path information The path of vulnerability in the origin software Optional

N7 Vulnerability patch The information containing vulnerability (e.g., "patch" file) Optional

N8 Patched file/function hash value The hash value of the patched file or function Required
10

TTAK.KO-12.0384

Takeaways and Conclusions

• Precise SBOM generation is challenging
• Modified OSS components and dependency changes make it hard to generate

a correct SBOM

• Diverse compile environments make binary component detection difficult

• Vulnerability scanning in SBOM is challenging
• Additional information needs to be considered for vulnerability database to improve precision

• Security patch sharing system should also be considered

Suggestions for SG17

• How can we collaborate in order to overcome these technical challenges?
• Research collaboration and standard efforts can inspire us to find solutions!

11

Thank you~

(Q&A)

How to Contact: IoTcube finds all bugs!

• KU CSSA: https://iotcube.net, cssa@korea.ac.kr

• Labrador Labs Inc.: https://labradorlabs.ai, contact@labradorlabs.ai

https://iotcube.net/
mailto:cssa@korea.ac.kr
https://labradorlabs.ai/
mailto:contact@labradorlabs.ai

	Slide 1
	Slide 2
	Slide 3: SBOM Overview
	Slide 4: Challenges in SBOM Generation: Accuracy
	Slide 5: Challenges in SBOM Management: Exploitability
	Slide 6: HatBOM: An Automated SBOM Tool in the IoTcube Platform
	Slide 7: How HatBOM works
	Slide 8: 1. How to describe dependencies
	Slide 9: 2. How to store the compile environments
	Slide 10: 3. How to verify the non-existence of vulnerabilities
	Slide 11: Takeaways and Conclusions
	Slide 12

