

Digital transformation is the process of integrating digital technology into all aspects of a sector in order to better connect with people, improve efficiency, and create new opportunities. It is a critical strategy to stay competitive in the digital age.

Why is Digital Transformation Important For Sustainability?

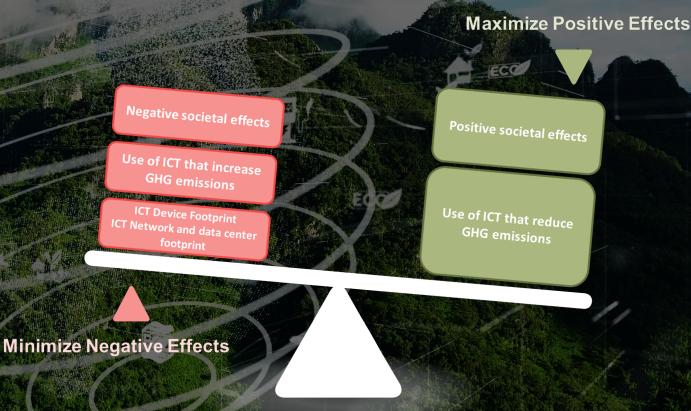
Make our economies circular by closing the loops of material and energy flows

Reduce environmental impacts by optimizing resource use and reducing waste

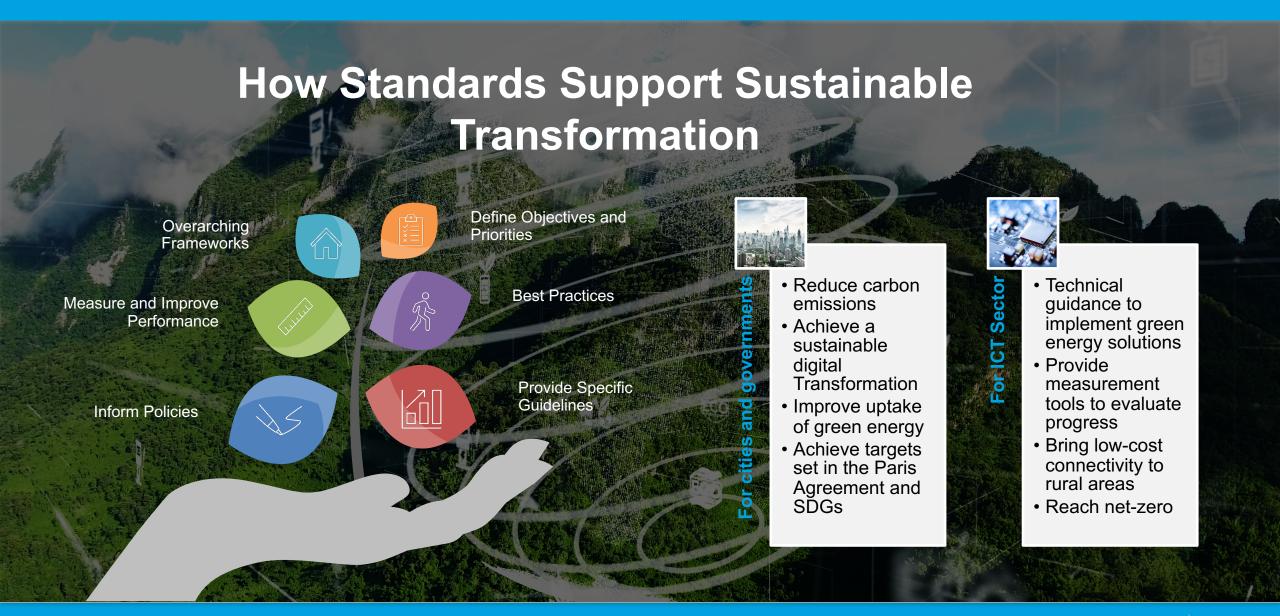
Increase energy efficiency and build a clean energy future

Empower
consumers to make
more informed
decisions about their
lifestyles and
consumption
choices

Help achieve net zero targets



Double-Edge Nature of ICTs


ICT's current share of global greenhouse gas (GHG) emissions at 1.8%–2.8% of global GHG emissions

HOWEVER

ICTs have the potential to slash global greenhouse gas (GHG) emissions by 20% by 2030

International Telecommunication Union (ITU)

The International Telecommunication Union (ITU) is the United Nations specialized agency for information and communication technologies (ICTs)

193 Member states

+700 Companies / organizations

+160 Academia members

ITU's Strategic Plan strives to support Sustainable Digital Transformation and Universal Connectivity

EMF, environment, climate action, sustainable digitalization, and circular economy

Electromagnetic compatibility, resistibility and lightning protection

Soft error caused by particle radiations

Human exposure to electromagnetic fields

Circular economy and ewaste management

ICTs related to the environment, energy efficiency, clean energy and sustainable digitalization for climate actions

International Standards on Sustainable Digital Transformation

Sustainable Digital Transformation

E-waste Management

Circular Economy

Energy Efficiency, Green Network and Data Centres

GHG Emissions and ICT Sector

 Standards to help sustainable e-waste management systems, recycling procedures and move us towards a circular economy.

 Designing with circularity and sustainability in mind avoiding waste and facilitating their recovery and re-use during their end-of-life phase.

- Identifying the environmental and energy efficiency requirements for ICTs.
- Providing solutions for assessing environmental performance of green networks and data centres.

 Providing trajectories, best practices, and targets to help the ICT sector move towards decarbonization and Net Zero emissions. To support and provide guidance to government, industry, and academia

ITU-T Standards Driving Sustainable Networks

Circular Design Criteria

Recommendation ITU-T L.1023

Assessing ICTs GHG Emissions

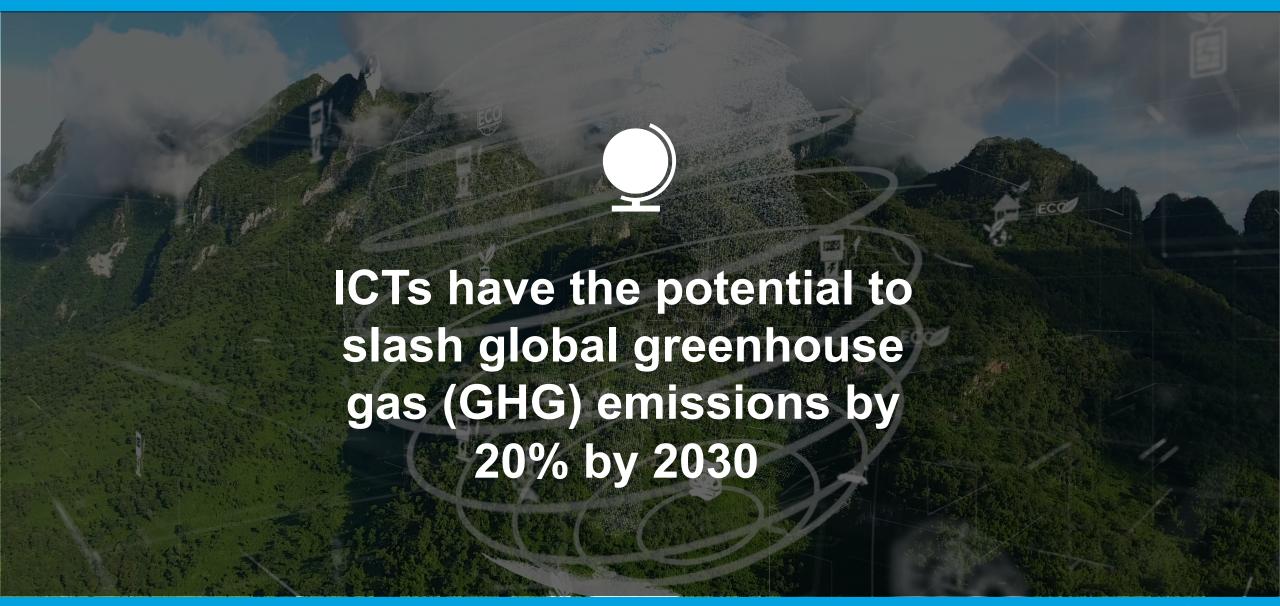
Recommendation ITU-T L.1410

Assessing Energy Efficiency of Networks

Recommendation ITU-T L.1331

Assessing GHG Emissions of Networks

Recommendation ITU-T L.1333


TRANSITION TO NET ZERO

Sets the trajectories of GHG emissions for the global ICT sector and sub-sector Recommendation ITU-T L.1470

Enabling the Net Zero transition

ITUPublications

International Telecommunication Union
Standardization Sector

Recommendation

ITU-T L.1480 (12/2022)

SERIES L: Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant

Assessment methodologies of ICTs and CO2 trajectories

Enabling the Net Zero transition: Assessing how the use of information and communication technology solutions impact greenhouse gas emissions of other sectors

- Provides a methodology on how to assess ICT and digital technologies solutions impact GHG emissions
- Being used by the European Green Digital Coalition

Six steps to assess an ICT solution

Define the goal of the assessment

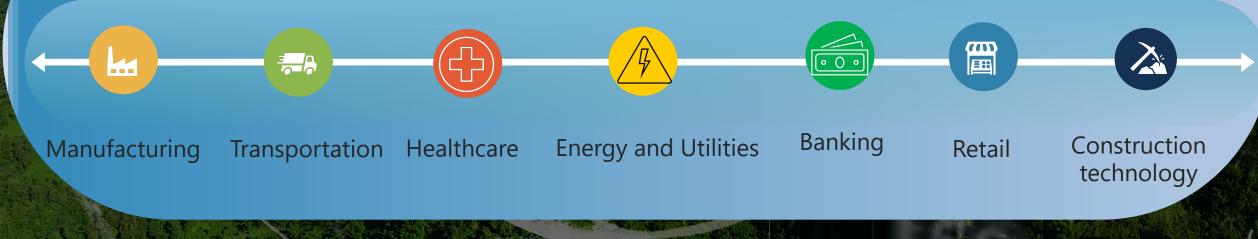
Scoping Time, Orders, Depth

Modelling, data collection and calculation

Critical review

Reporting

Interpretation of results



Example: Assessing the impact of a virtual event

Digital solutions Enabling the Net Zero transition in the vertical industry

ICTs and Digital Technologies solutions

Strengthening Collaboration and Implementation of Standards

Collaboration with other SDOs

Collaboration Across UN Agencies

Collaboration with other

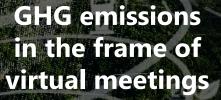
Organizations

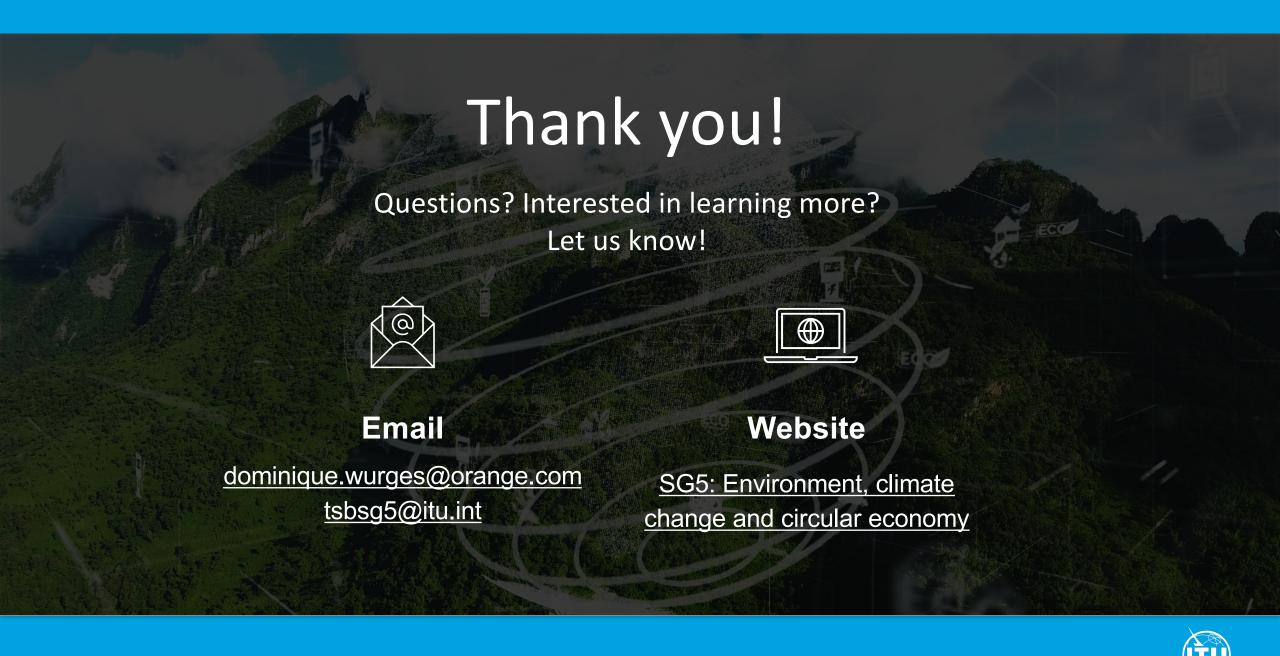
Supporting SDGs through Areas of Ongoing Work

Digital product passport

Definition of Sustainable Digital
Transformation

Guidance on simplified life cycle assessments of ICT





Protection, Reliability, Safety and Security

- •ITU-T K.120 "Lightning protection and earthing of a miniature base station"
- •ITU-T K.134 "Protection of small-size telecommunication installations with poor earthing conditions"
- •ITU-T K.151 "Electrical safety and lightning protection of medium voltage input and up to ±400 VDC output power system in ICT data centres and telecommunication centres"

Lightning Protection

- •ITU-T K.120 "Lightning protection and earthing of a miniature base station"
- •ITU-T K.134 "Protection of small-size telecommunication installations with poor earthing conditions"
- •ITU-T K.151 "Electrical safety and lightning protection of medium voltage input and up to ±400 VDC output power system in ICT data centres and telecommunication centres"

EMF

- •ITU-T K.44 "Resistibility tests for telecommunication equipment exposed to overvoltages and overcurrents Basic Recommendation"
- •ITU-T K.91, "Guidance for assessment, evaluation and monitoring of human exposure to radio frequency electromagnetic fields"

Electromagnetic Compatibility

- •ITU-T K.136
- "Electromagnetic compatibility requirements for radio telecommunication equipment"
- •ITU-T K.137

"Electromagnetic compatibility requirements and measurement methods for wireline telecommunication network equipment"

Environmental efficiency of digital technologies

- •ITU-T L.1317 "Guidelines on energy efficient blockchain systems"
- •ITU-T L.1331

 "Assessment of mobile network energy efficiency"
 •ITU-T L.1333
- "Carbon data intensity for network energy performance monitoring"

Power feeding and energy storage

- •ITU-T L.1210

 "Sustainable power-feeding solutions for 5G networks"
- •ITU-T L.1221 "Innovative energy storage technology for stationary use - Part 2: Battery"

Sustainable Data Centres

- •ITU-T L.1304

 "Procurement Criteria for Sustainable Data Centres"
- •ITU-T L.1305 "Data centre infrastructure management system based on big data and artificial intelligence technology"

Smart Energy Solutions

- •ITU-T L.1380: Telecom Sites
- •ITU-T L.1381: Data Centre
- •ITU-T L.1382: Telecommunication Room
- •ITU-T L.1383: City and home applications

Sustainable buildings

- ITU-T L.1370
 "Sustainable and intelligent building services"
- •ITU-T L.1371 "A methodology for assessing and scoring the sustainability performance of office buildings"

Sustainable management of E-waste and Supply Chain

- •ITU-T L.1015

 "Criteria for
 evaluation of the
 environmental
 impact of mobile
 phones"
- •ITU-T L.1035

 "Sustainable

 Management of

 Batteries"
- •ITU-T L.1060

 "General principles for the green supply chain management of information and communication technology manufacturing industry"

Circular Economy

- •ITU-T L.1000
 Universal power
 adapter and charger
 solution for mobile
 terminals and other
 hand-held ICT
 devices
- *ITU-T L.1022

 "Circular Economy:
 Definitions and
 concepts for
 material efficiency
 for Information and
 Communication
 Technology"
 (tentative)
- •ITU-T L.1023

 "Assessment method for circular scoring"

Climate Actions towards Net Zero

- •ITU-T L.1450

 "Methodologies for the assessment of the environmental impact of the ICT sector"
- •ITU-T L.1470 "GHG trajectories for the ICT sector compatible with the UNFCCC Paris Agreement"
- •ITU-T L.1471

 "Guidance and criteria for ICT organizations on setting Net Zero targets and strategies"

Circular and sustainable cities and communities

TTU-T L.Suppl. 46: "Definitions and Recent Trends in Circular Cities"

