
www.itu.int/go/dc3c-02

From cryptocurrencies to CBDCs

Fabric Token SDK
From Token Transfer to Interoperability

An event of the Digital Currency Global Initiative

Kaoutar Elkhiyaoui
IBM Reserarch

Organized jointly:

www.itu.int/go/dc3c-02

Central Bank Digital Currency: A Two-tiered Architecture

CBDC Book-keeping Service Audit

APIs

Tier 2

Tier 1

Users

Know Your Customer & Identity Management

Tier 1 (Central Bank)
 Distribute CBDC to commercial banks
 Track CBDC in circulation
 Enforce regulatory compliance

Tier 2 (Commercial Banks)

 Distribute CBDC to retail users
 On-board users (KYC)
 Execute retail payments

www.itu.int/go/dc3c-02

T
ie

r
2

Tier 1

U
se

rs

CBDC Book-keeping Service

Consortium A Consortium B

APIs APIs

Audit Cross-Ledger Interoperability

Know Your Customer & Identity Management Know Your Customer & Identity Management
KYC &

Identity Mgmt

Legacy

APIs

Central Bank Digital Currency: A Heterogeneous Architecture

www.itu.int/go/dc3c-02

T
ie

r
2

Tier 1

U
se

rs

CBDC Book-keeping Service

Consortium A Consortium B

APIs APIs

Audit Cross-Ledger Interoperability

Know Your Customer & Identity Management Know Your Customer & Identity Management
KYC &

Identity Mgmt

Legacy

APIs

Central Bank Digital Currency: A Heterogeneous Architecture

Efficient & Decentralized Privacy w. Regulatory Compliance

Atomic Asset Exchange

Cross-ledger Interoperability Protocol

www.itu.int/go/dc3c-02

Fabric Token SDK

Scope & Features
The goal of Fabric Token SDK is to deliver a set of APIs
that help developers create token-based distributed
applications on Hyperledger Fabric

The Fabric Token SDK supports

• UTXO model

• Fungible and non-fungible tokens

• Key management via wallets

• Multiple privacy levels: from no privacy to zero-
knowledge based instantiations that obfuscate the
content of ledger while ensuring transaction
verifiability

• Auditability

• Interoperability thanks to Weaver

Fabric Token SDK

www.itu.int/go/dc3c-02

A token consists of an

• Owner: The owner of the token

It could be a public key, an anonymous identity or an HTLC script

• Type: The denomination of the token

This is a string whose value is application specific

Examples: The denomination of a digital currency or unique identifiers

• Quantity: The amount stored in the token.

It is a positive number encoded as a string

Tokens are fungible with respect to the same type

Tokens with the same type can be merged and split, if not otherwise forbidden

A Simple and Effective Token Definition

www.itu.int/go/dc3c-02

Token Actions

Issue introduces a new token in the system

• An Issue action is defined by the newly created token

• An issue action is invoked by
Issue(Issuer_Wallet, Recipient, Type, Value)

Transfer transfers tokens from a sender to a recipient

• A transfer action is defined by the inputs to be
consumed and the outputs to be created

• A transfer action is invoked by
Transfer(Sender_Wallet, Type, Recipients, Values)

Redeem removes tokens from circulation

• It is a transfer with an output with a nil owner

• A redeem action is invoked by
Redeem(Sender_Wallet, Type, Value)

www.itu.int/go/dc3c-02

Anatomy of a Token Request

Transfers

Issues

Actions

Witnesses

Transfers Metadata

Issue Metadata

Metadata

Anchor

The Actions is a collection of Token Actions.
• Issues are used to create new Tokens
• Transfers are used to transfer tokens

Actions are accompanied by a set of Witnesses that attest to the consent
of the issuers and/or the token owners to perform a certain action.

The Anchor is used to bind the Actions to a given transaction.
In Hyperledger Fabric, the anchor is the Transaction ID.

The Metadata is a collection of Metadata, one entry for each Token Action.
This metadata is exchanged during the Token Request assembly. It contains
secret information used by the parties to check the content of the Actions.

Metadata is not stored on the ledger.

www.itu.int/go/dc3c-02

Data Transfer

• Secure data transfer from ledger A to
ledger B (i.e., ledger B uses ledger A as
an oracle)

• Easy in centralized context, challenging
in a decentralized one

Asset Transfer

• Atomic transfer of an asset from ledger A
to ledger B

• Asset is redeemed in ledger A and
introduced in ledger B atomically

Asset Exchange

• Asset X is transferred to Alice on ledger A
while an asset Y is transferred to Bob on
ledger B (e.g., DvP)

Interoperability

www.itu.int/go/dc3c-02

Data Transfer

• Secure data transfer from ledger A to
ledger B (i.e., ledger B used ledger A as
an oracle)

• Easy in centralized context, challenging
in a decentralized one

Asset Transfer

• Atomic transfer of an asset from ledger A
to ledger B

• Asset is redeemed in ledger A and
introduced in ledger B atomically

Asset Exchange

• Asset X is transferred to Alice on ledger A
while an asset Y is transferred to Bob on
ledger B (e.g., DvP)

Interoperability

www.itu.int/go/dc3c-02

Asset Exchange

Alice in Network A wants to transfer (100, EUR) to
Bob in Network A

Bob in Network B wants to transfer (100, e-Bonds)
to Alice in Network B

Alice and Bob are rational and online

Network B Network A

www.itu.int/go/dc3c-02

Asset Exchange with HTLC

1) Alice and Bob agree on the terms of the HTLC
contract

2) Bob picks a secret x and computes H(x)

3) Bob transmits H(x) to Alice

4) Bob submits a transaction that locks 100 e-Bonds
for Alice in Network B

• Unlocking conditions: Alice reveals x before
2*T elapses; else Bob reclaims 100 e-Bonds

5) Alice submits a transaction that locks 100 EUR for
Bob in Network A

• Unlocking conditions: Bob reveals x before T
elapses; else Alice reclaims 100 EUR

www.itu.int/go/dc3c-02

Asset Exchange in Fabric Token SDK

Pre-requisite: x, H(x), T

HTLC script is defined by (Sender, Recipient, Hash, Timeout)

Lock transfers a token to an HTLC script

• Lock is invoked by a call to Lock(Sender_Wallet, Recipient, Value, Type, Hash, Timeout)

• Lock creates a locked token whose ownership transfer is governed by the HTLC script

Claim transfers the ownership of a locked token from the HTLC script to the recipient

• Claim is invoked by a call to Claim(Recipient_Wallet, Unspent_Token, Preimage)

• Claim creates a token for the recipient

Reclaim transfers the ownership of a locked token from the HTLC script to the sender

• Reclaim is invoked by a call to Reclaim(Sender_Wallet, Unspent_Token)

• Reclaim creates a token for the sender

www.itu.int/go/dc3c-02

Weaver Interoperability Framework

Objective: manage fragmentation and increase scale and
impact through cross-network transactions and business
workflow linkages

Approach: direct on-demand controlled interactions among self-
sovereign networks, using DLT-neutral protocols and internal
network consensus, with no reliance on trusted third parties or
intermediating chains

Building Blocks or Capabilities

Network
× Access control
× Generate ledger state proof
× Validate ledger state proof
× Lock or pledge asset
× Claim or reclaim asset

Relay & Driver
× Address remote views
× Produce and expose view
× Invoke contracts
× Event pub/sub

Building a Network-of-
Networks without coalescing
into a single network/chain

Weaver

