
Highlights of architecture
concepts and components

ITU-T Focus Group on Autonomous Networks

Paul Harvey

www.paul-harvey.org

FG-AN

Where to find

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

Process

3 Key Concepts Architecture

135 Requirements

Architectural
components

Architectural
Framework

Three Key Concepts

Dynamic AdaptationDynamic Adaptation

Evolutionary
Exploration

Evolutionary
Exploration

Real-time
Responsive

Experimentation

Real-time
Responsive

Experimentation

Validate LogicCreate Logic

Apply Logic

Controller Controller

Definition 3.2.4: Controller

A controller is a workflow, open loop or closed loop [ITU-T Y.3115] composed of
modules, integrated in a specific sequence, using interfaces exposed by the
modules, which can be developed independently of the system under control
before integration into the system under control, to solve a specific problem or
satisfy a given requirement

Controller

Controller

Underlay network

Software
components

Orchestrator Controllers
Hardware

components

The interactions shown here are:
• Controller interacting with a hardware components [b-LogicNets]
• Controller interacting with software components
• Controller interacting with an orchestrator or other software control mechanism [b-FRINX]
• Controller interacting with another controller

NOTE 3- Building upon this simple representation, hierarchies of controllers may be formed.

Exploratory Evolution

Exploratory evolution is the process that creates and modifies a controller in accordance with the
system under control and the real-time changes therein.

NOTE 1 - An example of a process that creates a controller is the composition of controllers from
modules or other closed loops. This may involve the selection of modules which are used for
composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic change in the
controller’s structure by adding new modules, deleting existing modules, replacing existing
modules, or rearranging the structure of a controller’s modules, in accordance with the real time
changes in the system under control.

Controller ControllerControllerExploratory Evolution

• Evolution controller: responsible for evolution of

controllers by manipulating the module instance used

within a controller, the structure or topology of

connections between modules in a controller and/or

the values chosen for the module(s) parameters.

• Examples of processes to drive the modification of a

controller are:

• biologically inspired artificial evolution(e.g

evolutionary computing or genetic programming

[b-large-evolution, b-evolution])

• Bayesian optimisation [b-bayesian-radio]

• game theoretic approaches [b-game-theory].

Exploratory Evolution

Examples of Controller Evolution

1) A “RAN channel scheduling controller” is an example of a controller used to allocate radio resources to users
in a multi-user environment. Exploratory evolution is applied to a RAN channel scheduling controller in
response to the change of radio channel feedback from the UE. This may include selecting the most appropriate
algorithm from a set of alternatives.

2) An “anomaly detection controller” is an example of a controller used to detect abnormal states in the
operation of a network service, such as security attacks or peaks in resource usage for network function. In this
context, the new approaches of data fusion algorithms [b-data-fusion] may be applied. Exploratory evolution is
applied to “anomaly detection controller” by optionally using and configuring newly provided data fusion
algorithms as the input of an “anomaly detection controller”,

3) A “time-to-live controller” is an example of a controller used to configure the time duration for which a
certain content is cached in a CDN server. In a time-to-live controller in a caching system at the edge,
optimisation of the timeout parameter(s) is an example of application of exploratory evolution.

4) A “scaling controller” is an example of a controller used to increase or decrease the resource allocation for a
network function. In this context, exploratory evolution may be applied by controlling the configuration of the
scaling method of deployed controllers in a specific network domain.

Realtime Online Experimentation

Experimentation is the process that validates controllers using inputs from a combination of underlay network,
simulators and/or testbeds. The process of experimentation ensures that the controller under experimentation
satisfies the use case requirements and is compatible with deployment in the intended underlay.

Controller

Realtime Online Experimentation
Experimentation controller: generates potential

scenarios of experimentations based on controller

specifications and additional information as provided

by the knowledge base, executes the scenarios in the

AN Sandbox, collates and validates the results of the

experimentation.

NOTE 1 - Methods for generating scenarios for

experimentation are assisted by additional information

including knowledge captured in the knowledge base

and/or machine learning. Experimentation controller

may exploit the structured representation (e.g. TOSCA

YAML) of the controllers to derive scenarios for

experimentation. Experimentation scenarios can also

be provided by 3rd party providers to be used by the

experimentation controller.

Examples of Controller Experimentation

Examples of experimentation in various application contexts are given below:

• The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model checking to ensure that
provided management and orchestration solutions are well-formed against pre-defined rules

• The use of simulators or digital twins in offline validation of controllers. These simulators or digital twins
can support the same interfaces as underlays.

• The use of digital twins [b-Digital-twin] in online validation of controllers before deployment

• NOTE 5 - online validation involves use of timescales comparable to real underlays e.g. validation of
controllers (xApps) [b-ORAN] using digital twins.

• Combinations of the above to achieve broader coverage of validation, from the offline validation to online
validations during the operation of the underlay.

Dynamic Adaptation

• Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the underlay
undergoes changes at run-time. Integration of controllers may involve multiple domains of the underlay.

Controller ControllerController

Dynamic Adaptation
Adaptation Controller: responsible for selecting

candidate controllers from a set of generated

controller configurations which are ready for

integration, executes the integration to the

underlay.

NOTE - Adaptation controller has two parts:

- Curation controller (responsible for selection

and maintenance of the controllers within the

curated controller lists from the evolvable

controllers) and

- Selection Controller (responsible for the

selection of a services’ operational controller

from the curated controller lists).

Examples of Dynamic Adaptation

Examples of adaptation in various application contexts are given below:

• The need to use different traffic shaping algorithms for various geographical contexts, such as
urban vs rural

• Business priorities may change over a period of time, e.g. prioritization of performance KPIs over
energy efficiency or prioritisation of internal applications over third party applications. These
changes in business priorities may necessitate the use of different virtual machine or container
scheduling controllers.

• There could be a need to deploy new technology in order to improve or optimise operation,
including adding new capabilities that previously did not exist. E.g. new AI/ML algorithms or
new data fusion approaches to blend the increasing number of data sources.

• There could be a need to deploy new technology in order to address errors or faults. E.g. data
acquisition or actuation software for new hardware devices or adaptation software to account for
incompatibilities in deployed technology.

Evolution Controller

Experimentation Controller

Knowledge Base

Adaptation Controller

AN Orchestrator

An Sandbox

Architecture Components

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Manages knowledge derived from

and used in autonomous networks. It

is updated and accessed by various

components in the autonomous

network.

Validates controllers using inputs

from a combination of underlay

network, simulators and/or testbeds.

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

managing workflows and processes in the
AN and steps in the lifecycle of controllers

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

Architecture
Framework
Overview

Dynamic Adaptation subsystem

Knowledge Base subsystem

Autonomy Engine

Experimentation subsystem

A
N

 O
rch

estrato
r

E2
E N

etw
o

rk O
rch

estrato
r

Evolution
controllers

AN
Sandbox

Experiment
controller

Exploratory Evolution subsystem

Information Bases

Selection
controllers

Operation
controllers

Service
endpoint

Curation
controllers

Underlay network
Software

components
Orchestrator Controllers

Hardware
components

3 Key Concepts

Exploratory
Evolution of
Controllers

Realtime
Responsive

Experimentation
of Controllers

Self-
Evolution

Questions – (FG)AN Architecture Highlights

• https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

#autonomousnetworks

@jhebus

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

