Highlights of architecture
concepts and components

ITU-T Focus Group on Autonomous Networks

Paul Harvey
www.paul-harvey.org

FG-AN

Where to find

International Telecommunication Union

ITU-T Technical Specification

TELECOMMUNICATION
STANDARDIZATION SECTOR

OF ITU
(29 September 2022)

ITU-T Focus Group on Autonomous Networks

Technical Specification

Architecture framework for Autonomous
Networks

T

:

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

FG-AN

ITU-T Focus Group on Autonomous Networks was established by ITU-T Study Group
13 at its virtual meeting, 17 December 2020. The Focus Group will draft technical
reports and specifications for autonomous networks, including exploratory evolution in
future networks, real-time responsive experimentation, dynamic adaptation to future
environments, technologies, and use cases. The Focus Group will also identify
relevant gaps in the standardization of autonomous networks.

The primary objective of the Focus Group is to provide an open platform to perform
pre-standards activities related to this topic and leverage the technologies of others
where appropriate.

ToR: Terms of reference Parent group: ITU-T Study Group 13

Deliverables:

* Use cases for Autonomous Networks

Architecture framework for Autonomous Networks

Trustworthiness evaluation for autonomous networks including
IMT-2020 and beyond

Proof of Concept (PoC)

» Gap analysis

» Definitions glossary

Process

ITU-T Technical Specification

TELECOMMUNICATION
STANDARDIZATION SECTOR

OF ITU
(28 October 2021)

ITU-T Focus Group on Autonomous Networks

Technical Specification

Use cases for Autonomous Networks

I

3 Key Concepts

Architecture

135 Requirements

Architectural
components

Architectural
Framework

Three Key Concepts

Create Logic

Evolutionary
Exploration

Dynamic Adaptation

Real-time
Responsive
Experimentation

Apply Logic

Validate Logic

It is required that AN parses, validates and translates an
AN-arch-req-001 . o .
abstracted use case description, with high level objectives of
a controller (use case) into a controller description.

NOTE 2 — the abstracted use case description may be hand-crafted as unstructured text or derived
from “software modules specifications”

NOTE 3 — Controller description may use structured languages formats e.g. TOSCA and may
have a structure which facilitates downstream exploration, experimentation, and adaptation.
NOTE 4- controller description may use/enable properties derived from various domains in the
network e.g. properties to describe physical layer, network layer and application layer use cases.

NOTE 5- examples of use cases are

(a) root cause analysis and diagnosis of network elements based on real time analysis of data .
(b) Intelligent energy saving solution based on automatic data acquisition, Al-based energy consumption
modelling and inference, facilities parameters control policies decision, facilities adjustment actions
implementation, energy saving result evaluation and control policies continuous optimization.

(¢) optimal adjustment of antenna parameters with Al capabilities of multi-dimensional analysis and
prediction.

(d) management of industry vertical applications and related services in the network.

Requirement

Description

AN-arch-req-002

it is required that AN validates and processes the controller
description, so that exploratory evolution can be applied on
the controller descriptions.

NOTE 6 — exploratory evolution may include the following: interconnecting of descriptions
together to form complex controller descriptions.

NOTE 7 — exploratory evolution may result in a list of evolvable controllers

NOTE 8 — exploratory evolution may be a continuous process.

Controller

Controller

Definition 3.2.4: Controller

A controller is a workflow, open loop or closed loop [ITU-T Y.3115] composed of
modules, integrated in a specific sequence, using interfaces exposed by the
modules, which can be developed independently of the system under control

before integration into the system under control, to solve a specific problem or
satisfy a given requirement

\ % [

L
A G !
Controller\ \t ! J
z -

(|
I

Underlay network

Hardware Software
Orchestrator Controllers
components components

The interactions shown here are:

e Controller interacting with a hardware components [b-LogicNets]
e Controller interacting with software components

e Controller interacting with an orchestrator or other software control mechanism [b-FRINX]
e Controller interacting with another controller

NOTE 3- Building upon this simple representation, hierarchies of controllers may be formed.

Exploratory Evolution

Exploratory evolution is the process that creates and modifies a controller in accordance with the
system under control and the real-time changes therein.

NOTE 1 - An example of a process that creates a controller is the composition of controllers from
modules or other closed loops. This may involve the selection of modules which are used for
composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic change in the
controller’s structure by adding new modules, deleting existing modules, replacing existing
modules, or rearranging the structure of a controller’s modules, in accordance with the real time
changes in the system under control.

~ 470 @

Controller Exploratory Evolution Controller Controller

)

Exploratory Evolution

* Evolution controller: responsible for evolution of
controllers by manipulating the module instance used
within a controller, the structure or topology of

[Evolution controllers } connections between modules in a controller and/or

the values chosen for the module(s) parameters.

Exploratory Evolution subsystem

* Examples of processes to drive the modification of a

Knowledge Base Subsystem
8 Y controller are:

* biologically inspired artificial evolution(e.g
evolutionary computing or genetic programming

Dat ili . .
e Sotuee Controllers iy [b-large-evolution, b-evolution])
repository Modules Functions > L.))
* Bayesian optimisation [b-bayesian-radio]

Information Bases

» game theoretic approaches [b-game-theory].

Examples of Controller Evolution

1) A “RAN channel scheduling controller” is an example of a controller used to allocate radio resources to users
in a multi-user environment. Exploratory evolution is applied to a RAN channel scheduling controller in
response to the change of radio channel feedback from the UE. This may include selecting the most appropriate
algorithm from a set of alternatives.

2) An “anomaly detection controller” is an example of a controller used to detect abnormal states in the
operation of a network service, such as security attacks or peaks in resource usage for network function. In this
context, the new approaches of data fusion algorithms [b-data-fusion] may be applied. Exploratory evolution is
applied to “anomaly detection controller” by optionally using and configuring newly provided data fusion
algorithms as the input of an “anomaly detection controller”,

3) A “time-to-live controller” is an example of a controller used to configure the time duration for which a
certain content is cached in a CDN server. In a time-to-live controller in a caching system at the edge,
optimisation of the timeout parameter(s) 1s an example of application of exploratory evolution.

4) A “scaling controller” is an example of a controller used to increase or decrease the resource allocation for a
network function. In this context, exploratory evolution may be applied by controlling the configuration of the
scaling method of deployed controllers in a specific network domain.

Realtime Online Experimentation

Experimentation is the process that validates controllers using inputs from a combination of underlay network,
simulators and/or testbeds. The process of experimentation ensures that the controller under experimentation
satisfies the use case requirements and 1s compatible with deployment in the intended underlay.

Stage 1: Stage 2: Stage 3:
Sanity Checks Simulation Canary Testing
= I .
dH [#] B~
g ab
L= L1l B

Controller

]

AN Orchestrator

Realtime Online Experimentation

Knowledge Base subsystem

Experimentation subsystem
i Experiment AN
Controller Sandbox

[J101e41Saya.(Q 40M]leN 73]

Experimentation controller: generates potential
scenarios of experimentations based on controller
specifications and additional information as provided
by the knowledge base, executes the scenarios in the
AN Sandbox, collates and validates the results of the
experimentation.

NOTE 1 - Methods for generating scenarios for
experimentation are assisted by additional information
including knowledge captured in the knowledge base
and/or machine learning. Experimentation controller
may exploit the structured representation (e.g. TOSCA
YAML) of the controllers to derive scenarios for
experimentation. Experimentation scenarios can also
be provided by 3™ party providers to be used by the

experimentation controller. IE
\A/

Examples of Controller Experimentation

Examples of experimentation in various application contexts are given below:

The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model checking to ensure that
provided management and orchestration solutions are well-formed against pre-defined rules

The use of simulators or digital twins in offline validation of controllers. These simulators or digital twins
can support the same interfaces as underlays.

The use of digital twins [b-Digital-twin] in online validation of controllers before deployment

* NOTE 5 - online validation involves use of timescales comparable to real underlays e.g. validation of
controllers (xApps) [b-ORAN] using digital twins.

Combinations of the above to achieve broader coverage of validation, from the offline validation to online
validations during the operation of the underlay.

Dynamic Adaptation

* Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the underlay
undergoes changes at run-time. Integration of controllers may involve multiple domains of the underlay.

Controller Controller Controller

10s 20s 30s 405 50s 1m 1m 10s 1m 20s 1m

AN Orchestrator

Dm— [

Dynamic Adaptation

Knowledge Base Subsystem

Information Bases

Data Software contillern Utility
repository Modules Functions
Dynamic Adaptation subsystem
Selection] [Curation] [Operation] [Service]
controllers controllers controllers endpoint

¢

Underlay Network

[101e4]S9y2.Q JJomlaN 323]

Adaptation Controller: responsible for selecting
candidate controllers from a set of generated
controller configurations which are ready for
integration, executes the integration to the
underlay.

NOTE - Adaptation controller has two parts:

- Curation controller (responsible for selection
and maintenance of the controllers within the
curated controller lists from the evolvable
controllers) and

- Selection Controller (responsible for the
selection of a services’ operational controller
from the curated controller lists).

Examples of Dynamic Adaptation

Examples of adaptation in various application contexts are given below:

The need to use different traffic shaping algorithms for various geographical contexts, such as
urban vs rural

Business priorities may change over a period of time, e.g. prioritization of performance KPIs over
energy efficiency or prioritisation of internal applications over third party applications. These
changes 1n business priorities may necessitate the use of different virtual machine or container
scheduling controllers.

There could be a need to deploy new technology 1n order to improve or optimise operation,
including adding new capabilities that previously did not exist. E.g. new AI/ML algorithms or
new data fusion approaches to blend the increasing number of data sources.

There could be a need to deploy new technology in order to address errors or faults. E.g. data
acquisition or actuation software for new hardware devices or adaptation software to account for
incompatibilities in deployed technology.

Architecture Components

Evolution Controller

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Experimentation Controller

Validates controllers using inputs
from a combination of underlay

network, simulators and/or testbed:s.

Knowledge Base

Manages knowledge derived from
and used in autonomous networks. It
is updated and accessed by various
components in the autonomous
network.

An Sandbox

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

AN Orchestrator

managing workflows and processes in the
AN and steps in the lifecycle of controllers

Adaptation Controller

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

Knowledge Base subsystem

* -
[Information Bases]

P
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
1
1
|
|
|
|
|
|
|
]

|{ Autonomy Engine :
: Exploratory Evolution subsystem : > E
. [——— L | g—
A rC h | te Ct u re : [Evolution controllers } I g g
| : =
I I ™)
F ra m eWO r k : Experimentation subsystem L 5" 4 g
. : [Experiment] [AN] : § §
Ove rV| eW : controller Sandbox : %
N 7/ (=g
' § 1 2

Dynamic Adaptation subsystem
[Curation] [Selection] [Operation] [Service] >
controllers controllers controllers endpoint

Underlay network —

ma Hardware Software
- ol [Orchestrator] [Controllers]
components components

3 Key Concepts

Knowledge Base subsystem

[Information Bases]

Jo

Autonomy Engine

Exploratory Evolution subsystem
Evolution
controllers
Experimentation subsystem

Experiment AN
controller Sandbox

101e41Saydi0 NV

!

Dynamic Adaptation subsystem
[Curation] [Selection] [Operation] [Service]

controllers controllers controllers endpoint

Underlay network

fe—>

Hardware Software
l I [] l Orchestrator I l Controllers I
components components

101eJ1Say24Q M4omiaN I3

Exploratory

Evolution of
Controllers

AN Operator

AN Orchestrator

1. Use Case Specification _ |

Evolution Controller

2. Evolution Specification

Knowledge Base

4. Response [Modules]

5. Request for Knowledge

I

I

I

I

I
g

I 3. Request for Modules

|

I

*

I

I
I
I
I
I
I
g
|
I
I

I I
H— 6. Response [Knowledge]]

7. Evolution Process Iﬁ

8. Evolution Notification

9. Update Knowledge Base Request

_____"_ff_________________l

-_ N L __

10. Update Knowledge Base H
I

AN Orchestrator Experiment Controller Knowledge Base AN Sandbox

0. Experiment Specifications and Evolvable Controllers are Populated |ﬁ :
I

0. Sanbox Components are Populated %

1. Experiment Specification

| -
Ll

2. Request for Experiments

Realtime
Responsive

3. Response [Experiments]

4. Request for Controllers

5. Response [Controllers]

AT AT ————————-

Experimentation
of Controllers

-y _Jl_ vy v _______|

L _ _ 6. RequestforKnowledge
I
I

I
8. Experiment Design |ﬁ I
I

l >

I
10. Response [validation]

|
| 9. Request for Validation
[
|

11. Experiment Notification

12. Update Knowledge Base Request

»
L

13. Update Knowledge Base

|
|
I
|
I
|
I
|
|
I
I
I
|
I
|
I
|
|
|
|
I
|
I
|
I
|
I
|
|
I
I
I
|
I
|
I
<
I
[
|
I
I
I
|

e

-y __

T T

1 A
! l
I

! Evolution Experiment :
| Knowledge I
| controllers controllers |
| Base subsystem !
: F 9 I
| I
| A 4 i
| 4 s ™]
I Curation !
: controllers !
: L 3 |
: ¥ :
! Selection hi \
;. | controllers | AN arc |tecture:
N S ﬁ.\

Evolution - -
Evolution Base subsystem Experiment
controllers Y controllers
v
[Curation)

1
1
|
1
|
1
|
1
|
1
__controllers !
b 1
1

1

1

1

1

1

1

1

1

1

|

1

r
Selection

L _controllers |
3
$
Operation
_controllers |

= = ——— = = = = -

[Underlay Network]

Questions — (FG)AN Architecture Highlights

e https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

#autonomousnetworks
¥y M @jhebus

Knowledge Base subsystem

[Information Bases]

IS

=

—— e e e e e e e e e =

Exploratory Evolution subsystem

[Evolution controllers]

101811534210 NY

Experiment AN
controller Sandbox

s i Bl

Dynamic Adaptation subsystem

[Curation] [Selection] [Operation] [Service]
controllers controllers controllers endpoint

101e11S9Yd.4Q Y4OMloN 323

r
}

Underlay network

Hardware Software
b b [Orchestrator] [Controllers]
components components

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

