

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2017-2020

FOCUS GROUP ON AUTONOMOUS

NETWORKS (FG-AN)

AN-I-298-R2

Original: English

Question(s): N/A February 2023 (TBC)

INPUT DOCUMENT

Source:
FUTMinna, Nigeria

Title: Report on activities for Build-a-thon 2022 from Tech Rangers team

Contact:
Ebeledike Frank Chukwubuikem

Computer Engineering Student

FUTMinna

Email: frankcebeledike@gmail.com

Contact:
Emmanuel Othniel Eggah

Computer Engineering Student

FUTMinna

Email: emmanueleggah@gmail.com

Contact:
Abel Oche Moses

Computer Engineering Student

(FUTMinna, Nigeria)

Email: oche.m1902995@st.futminna.edu

Contact:
Dr James Agajo (Associate Professor)

PhD (Telecommunication and

Computer Engineering)

Head of Department, Computer

Engineering

(FUTMinna, Nigeria)

Email: james.agajo@futminna.edu.ng

Keywords: 5G, Artificial Intelligence, build-a-thon, Challenge, closed loop, controller,

hackathon, Machine Learning, Proof of concept

Abstract: This contribution provides a report on activities by Tech Rangers team towards the

Build-a-thon 2022. We analyse AN-usecase-001 [FGAN-use cases], “Import and

export of knowledge in an autonomous network”, produce a design as per the

reference design in the Build-a-thon repository. We also provide the corresponding

code based on the reference code in the Build-a-thon 2022 repository.

1. References

[FGAN-use cases] ITU-T Focus Group Autonomous Networks Technical Specification

 “Use cases for Autonomous Networks”

 https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Use-case-AN.pdf

[Build-a-thon 2022] https://github.com/vrra/FGAN-Build-a-thon-2022

[FG AN Arch framework] Architecture framework for Autonomous Networks,

 https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf

https://hkrtrainings.com/what-is-tosca

https://alien4cloud.github.io/#/documentation/3.0.0/devops_guide/normative_types/t

osca_concepts_types_normative_nodes.html

[FGAN Arch] ITU-T Focus Group on Autonomous Networks Technical Specification

https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Use-case-AN.pdf
https://github.com/vrra/FGAN-Build-a-thon-2022
https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf
https://hkrtrainings.com/what-is-tosca
https://alien4cloud.github.io/#/documentation/3.0.0/devops_guide/normative_types/tosca_concepts_types_normative_nodes.html
https://alien4cloud.github.io/#/documentation/3.0.0/devops_guide/normative_types/tosca_concepts_types_normative_nodes.html

- 2 -

AN-I-298-R2

“Architecture framework for Autonomous Networks”

https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-

AN.pdf

[TOSCA v1.3] TOSCA Simple Profile in YAML Version 1.3, OASIS Standard, 26 February

 2020,https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf

[Pydroid] https://www.makeuseof.com/install-pydroid-android/

[WINEST Github] https://github.com/Winest-Nigeria/fgan-I-298-R1

[FGAN-Build-a-thon] ITU-T FGAN Build-a-thon report https://extranet.itu.int/sites/itu-

t/focusgroups/an/input/FGAN-I-289-R1.docx

[video] https://youtu.be/eL1-1vCSiMM

2. Introduction

This report was written by students from Federal University of Technology Minna towards

the upcoming Build a thon 2022 activity. The team has produced TOSCA YAML file

corresponding to some of the use cases in FG AN and used xOpera to parse and verify the

YAML file.

The TOSCA metamodel uses the concept of service templates that describe cloud workloads

as a topology template, which is a graph of node templates modelling the components a

workload is made up of and of relationship templates modelling the relations between those

components. TOSCA service template are instantiated at runtime using a TOSCA orchestrator

(xOpera) and the order of component instantiation is based on the relationship between

components. TOSCA is one of best and most often used automated testing tools. It is widely

employed in large-scale applications to achieve successful outcomes.

In the TOSCA Simple Profile, TOSCA service templates must always have, as the first line

in its YAML file, the keyword “tosca_definitions_version” with an associated TOSCA

Namespace Alias value.

Fig 3 of [FGAN-Build-a-thon], (see below), shows the representation of modules and

controller descriptions.

https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf
https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://www.makeuseof.com/install-pydroid-android/
https://www.makeuseof.com/install-pydroid-android/
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-289-R1.docx
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-289-R1.docx
https://youtu.be/eL1-1vCSiMM

- 3 -

AN-I-298-R2

 Figure 1: Problem statement steps [FGAN-I-289-R1].

The team selected Usecase-001 from the FG AN use case document. The use case was carefully

studied, from which the team came up with a design (shown in Figure 2) which was implemented

in TOSCA YAML. The design was validated by parsing it using the xOpera open-source

orchestrator. This was tested on the Google Colab platform. Also, the team was able to show how

can be replicated on android devices [see Appendix II].

Also, the team was able to show how a the YAML file can be generated from the use case stored

in a graph database (an example is using neo4j). To achieve this, a basic template YAML template

of the use case was written. Ruamel (a python YAML editing library) was used to populate the

nodes of the use case by using information about the use case gotten from querying the graph

database. Finally, the generated YAML was then validated by parsing it using xOpera.

These steps are summarized in Figure 2.

Select use case e.g. use
case from FG AN O-13 R1

Draw a design

Upload the design e.g.
to our github

Use reference toolsets to
demo

Figure 2: Problem statement steps [FGAN-I-289-R1].

- 4 -

AN-I-298-R2

In this contribution, we describe the use case, the approach taken by the team in designing the

use case and the results from our experiments. For this, we take the following steps:

(a) Analyse the use case (manual step)

(b) Create neo4j sub graph (manual step)

(c) Create YAML (using Ruamel)

(d) Parse and deploy the YAML using xOpera

 NOTE – steps (c) and (d) have been successfully done using [Pydroid] and Google colab

environment.

The approach adopted by the team to develop the close loop are:

A. Populate Neo4j database with the actors and relationships from our use case in TOSCA.

Figure 3: Flow chart of the service template generation from the graphDB.

- 5 -

AN-I-298-R2

Here we are using python to populate our Neo4j database with the actors and

corresponding relationships. We also used the Ruamel.yaml python package which is

a YAML parser/emitter to create a YAML file from Neo4j database.

B. Creating a YAML file which is made up of seven nodes (AN_Orchestrator_0,

KB_manager_0, KB_0, Auto_controller_generator_0, OpenCN_0, ML_pipeline_0 and

Human_Operator_0).

3. Problem statement

Due to the increasing numbers of data that needs to be processed by networks, manual techniques for

management cannot handle the complexity of the network as a result there is a need for an

autonomous network that runs with minimal to no human intervention—able to configure, monitor,

and maintain itself independently is required to process those data at high speed with low latency

with high accuracy in other to maintain a smooth running of the system.

AN-usecase-001 from [FGAN-use cases] was studied.

General use case scenarios comprise of the following steps:

1. Knowledge is imported from outside or peer entities of the AN components

2. Knowledge is referred internally in the AN components, e.g., for driving evolution, driving

exploration, configuration of automation loops.

3. Generate report for human consumption

4. Knowledge is stored and updated within the AN components

5. Knowledge is exported from the AN components to outside or peer entities.

To this end, the team carried out a research on how to build a close-loop system that manages its

resources and we used the TOSCA simple profile in YAML to design the close loop prototype

4. Approach taken by the team

The approach adopted by our team to develop the close loop are:

C. Populate Neo4j database with the actors and relationships from our use case in TOSCA.

Here we are using python to populate our Neo4j database with the actors and

corresponding relationships. We also used the Ruamel.yaml python package which is

a YAML parser/emitter to create a YAML file from Neo4j database.

D. Creating a YAML file which is made up of seven nodes (AN_Orchestrator_0,

KB_manager_0, KB_0, Auto_controller_generator_0, OpenCN_0, ML_pipeline_0 and

Human_Operator_0).

5. High-level flow chart

- 6 -

AN-I-298-R2

AN_ORCHESTRATOR:

As per [FGAN Arch], AN orchestrator is the component responsible for managing workflows and

processes in the AN and steps in the lifecycle of controllers. To manage the workflows and processes

in AN, AN orchestrator coordinates with various other functions in the AN as well as outside the AN.

Being part of the management plane, AN orchestrator provides interface to human operators in the

form of reports regarding the functioning of the AN and human interfaces for configuring the AN,

where applicable.

KB_MANAGER:

As per [FGAN Arch], KB manager is a subsystem which manages storage, querying, export, import

and optimization and update knowledge, including that derived from different sources including

structured or unstructured data from various components or other subsystems.

KB manager is a node which optimizes and manages data available on the close_loop but requires a

node which can host its resources. Since AN_orchestrator has the capability of hosting node resources

it is designed to be a host to the KB_ manager.

KB:

As per [FGAN Arch], Knowledge in AN is a collection of resources that helps in solving a specific

type of problem. A knowledge base component manages knowledge derived from and used in

autonomous networks. It is updated and accessed by various components in the autonomous network.

Knowledge includes metadata which is derived from the capabilities, status of AN components.

This knowledge is stored and exchanged as part of interactions of AN components with knowledge

base. Knowledge can be derived from different sources including structured or unstructured data

AUTO_CONTROLLER_GENERATOR:

- 7 -

AN-I-298-R2

This node represent generic software component that can be managed and run by a TOSCA Compute

Node Type. It generate controller specifications using the existing repository in OpenCN, the

knowledge base and an analytics function aided by AI/ML

OPEN CN:

This node stores the controllers for the AN.

ML_PIPELINE:

This node is able to learn and adapt without following explicit instructions, by using algorithms and

statistical models to analyze and draw inference from patterns in data. It hosts analytics and

recommends controllers in the AN

HUMAN_OPERATOR:

This node is just like a user friendly interface for human base instructions

6. 5.0 PoC: results

1. refer to the appendix for the YAML

2. screenshot for the neo4j graph

- 8 -

AN-I-298-R2

2. screenshot for the compile with xOpera

- 9 -

AN-I-298-R2

7. Problems encountered.

The major problem encountered during this activity are:

❖ Indentation of the YAML syntax

- 10 -

AN-I-298-R2

❖ Spelling errors due to syntax case sensitivity

❖ The version of YAML available on the device and the required version need to parse the files

8. Future activities:

This contribution provides a report on activities by Tech Rangers team towards the Build-a-

thon 2022. We analyse AN-usecase-001 [Y.suppl 71], “Import and export of knowledge in an

autonomous network”, produce a design as per the reference design in the Build-a-thon

repository. We also provide the corresponding code based on the reference code in the Build-

a-thon 2022 repository.

At the time of this report the focus was on translating AN-usecase-001 to a YAML file from

Neo4j Graphs using a Python script. in the future generating a YAML file for any usecase

from Neo4j will be developed.

Appendix: YAML file

tosca_definitions_version: tosca_simple_yaml_1_3

relationship_types:

 basicrelationship:

 derived_from: tosca.relationships.Root

topology_template:

 node_templates:

 Knowledge Base:

 type: tosca.nodes.SoftwareComponent

 description: Stores knowledge related to the AN.

 requirements:

 - export:

 node: Knowledge Base

 relationship: exports

 - import:

 node: Knowledge Base

 relationship: imports

 Knowledge Base Manager:

 type: tosca.nodes.SoftwareComponent

 requirements:

 - export:

 node: Knowledge Base

 relationship: exports

 - optimize:

 node: Knowledge Base

 relationship: optimizes

- 11 -

AN-I-298-R2

 AN Orchestrator:

 type: tosca.nodes.Compute

 requirements:

 - refer:

 node: Knowledge Base

 relationship: refersTo

 - generates_Tosca:

 node: Auto controller generator

 relationship: generates

 Auto controller generator:

 type: tosca.nodes.SoftwareComponent

 description: Generate controller specifications

 requirements:

 - dependency: ML Pipeline

 OpenCN:

 type: tosca.nodes.SoftwareComponent

 description: Stores controllers

 ML Pipeline:

 type: tosca.nodes.SoftwareComponent

 description: Hosts analytics

 Human operator:

 type: tosca.nodes.SoftwareComponent

 description: Reads reports and monitors

 relationship_templates:

 refersTo:

 type: basicrelationship

 optimizes:

 type: basicrelationship

 exports:

 type: basicrelationship

 stores:

 type: basicrelationship

 recommends:

 type: basicrelationship

 imports:

 type: basicrelationship

 reads:

 type: basicrelationship

 monitors:

- 12 -

AN-I-298-R2

 type: basicrelationship

 inputs:

 type: basicrelationship

 generates:

 type: basicrelationship

Appendix: How to install opera on Pydroid

Since Pydriod is an IDE for python, to be able to parse YAML file on this platform there is a need

to install a library called opera. This installation can be done on either terminal or on pip.

STEPS FOR PIP INSTALLATION

1. Open Pydriod

[https://play.google.com/store/apps/details?id=ru.iiec.pydroid3&hl=en&gl=US] on your

mobile.

2. Click on the three horizontal lines at the top left hand side.

3. Click on pip

- 13 -

AN-I-298-R2

4. Type opera and click install

You may be redirected if you don't have the repository plug-in install on your phone.

- 14 -

AN-I-298-R2

To avoid this install pydroid repository plug-in from play store.

Demo video : https://youtu.be/eL1-1vCSiMM

https://youtu.be/eL1-1vCSiMM

