
PIE: p-adic Encoding for High-Precision Arithmetic using Homomorphic Encryption
Gaetan Delavignette 1 Luke Harmon 1 Arnab Roy 1 David Silva 1

1Algemetric

Motivation

Rational data are frequently used in many real-world settings such as finance, health care, and

business intelligence. Further, these data must often be composed in ways which require addition

and multiplication of rational numbers.

p-adic numbers, plaintexts, and the encoding function

p-adic representation: If x
y ∈ Q and p is a prime then we have

x

y
=

∞∑
j=n

ajp
j = anpn + an+1p

n+1 + . . . , (1)

where 0 ≤ aj < p and n ∈ Z. An r-segment p-adic representation, a.k.a Hensel code, simply

truncates the above sum after j = r − 1. I.e.,

x

y
=

r−1∑
j=n

ajp
j + O(pr).

A p-adic integer is a rational which can be rewritten in the form

x′

y′p
v, for v ≥ 0 and gcd(x′, p) = gcd(y′, p) = 1

Given a prime p and an integer r ≥ 1, let N =
⌊√

pr−1
2

⌋
. The Farey rationals are defined as

FN =
{

x

y
: 0 ≤ |x| ≤ N, 1 ≤ y ≤ N, gcd(x, y) = gcd(y, p) = 1

}
(2)

FN is a set of p-adic integers.

Given x0, x1 ∈ Z,
MEEA(x0, x1) −→

(
(−1)i+1xi, (−1)i+1yi

)
, i ≥ 0 (3)

where xi, yi are generated by the extended Euclidean algorithm (EEA). The MEEA simply stops

EEA early (once |xi| ≤ N).

A homomorphic mapping: The injective mapping Hpr : FN → Z/prZ and its inverse are defined

as

Hpr

(
x

y

)
= xy−1 mod pr,

H−1
pr (h) = MEEA(pr, h)

(4)

(5)

Hpr gives a unique representation of each element of FN in Z/prZ.

General extension: The above results can be extendedwhen pr is replaced by an arbitrary positive

integer g = pr1
1 · · · p

rk
k to define Hg : FN,g → Z/gZ,

where the domain is the set of extended Farey rationals:

FN,g =

{
x

y

∣∣∣∣∣ ∃h ∈ Z/gZ s.t. MEEA(g, h) = (x, y), gcd(x, g) = gcd(y, g) = gcd(x, y) = 1

}
.

PIE Encoder

Let g be a positive integer and N = b
√

(g − 1)/2c. FN,g is the input space. Since it is not closed

under + and ·, we define GM =
{

x
/

y
∣∣ |x|, |y| ≤ M

}
⊆ FN,g as the message space.

Encoding and decoding are defined as follows:

PIE.Encode
(

x

y

)
. For

x

y
∈ FN,g output Hg

(
x

y

)
∈ Z/gZ.

PIE.Decode(z). For z ∈ Z/gZ, output H−1
g (z) ∈ FN,g.

(6)

(7)

The smaller M is relative to N , the deeper the circuits with which PIE is compatible.

setup PIE with

FHE-compatible

parameters

Rational

inputs
PIE.Encode FHE.Encrypt

Compute on

ciphertexts

FHE.DecryptPIE.DecodeRational

outputs

Figure 1. Attaching PIE to an FHE scheme.

PIE with an AGCD-based Batch FHE

We attach PIE to the batch integer FHE scheme (IDGHV) from [2].

Choose the public parameters Q1, . . . , Q` of IDGHV to be distinct odd primes, let g =
∏`

i=1 Qi,

and N = b
√

(g − 1)/2c. We encode and decode as follows:

IDGHV.Encode. For m ∈ GM , output
(

PIE.Encode(m) mod Q1, . . . , PIE.Encode(m) mod Q`

)
IDGHV.Decode. For (h1, . . . , h`) ∈ Z/Q1Z × · · · × Z/Q`Z, compute h = CRTQ1,...,Q`

(h1, . . . , h`),
then output PIE.Decode(h).

The set Pd,t is the set of multivariate polynomials with integer coefficients, degree d, and `1
norm at most t. Encoding correctness, i.e. Decode

(
Encode(m)

)
= m, is ensured by choosing

M ≤
(
N
/

t
)1/dt

.

PIE with an RLWE-based FHE

We attach PIE to a modified version [1] of the Fan-Vercauteren (FV) scheme [3], which we call

ModFV. The message space of ModFV is the ring Z/(bn + 1)Z, for public HE parameters b and n.
We distinguish (for analysis) two cases: b prime and b composite. The choice of b decides the set

of rationals which can be encoded.

ModFV.Encode. For x
/

y ∈ GM ⊆ FN,bn+1, output PIE.Encode
(
x
/

y
)

∈ Z/(bn + 1)Z.
ModFV.Decode. For h ∈ Z/(bn + 1)Z, output PIE.Decode(h).

ModFV is also paired with a rational encoder, however, for fixed b,n PIE has a much larger input

space.

b n PIE CLPX PIE
/

ModFV

150 211 150211 + 1 150211−1
149 143

824 210 824210 + 1 824210−1
823 1000

1534 212 1534212 + 1 1534212−1
1533 1429

Table 1. Comparison of input space sizes for PIE and ModFV encoder when bn + 1 is prime.

b n PIE ModFV PIE
/

ModFV
3 12 442765 265720 1.7

5 8 324646 97656 3.3

7 8 4787969 960800 5

30 8 ≈ 4 × 1011 ≈ 2.2 × 1010 16.7

210 4 ≈ 1.2 × 109 ≈ 9 × 106 125

210 6 ≈ 4.4 × 1013 ≈ 4.1 × 1011 111

Table 2. Comparison of input space sizes for PIE and ModFV encoder when bn + 1 is composite.

Library and Demo

PIE is implemented in C++ using NTL andGMP for large integer, vector, and polynomial arithmetic,

and Bazel as the build system, and is available at https://github.com/Algemetric/pie-cpp. PIE can

be built as a stand-alone fractional encoding library or in conjunctionwith either IDGHV orModFV.
The implementation is currently not optimized for performance, therefore the numbers below aim

to highlight the overhead of adding PIE to an HE scheme.

λ ` ρ η γ τ log2(prime) Encoding time

50 6 60 4248 5.3 · 108 661 1500 0.006ms

52 37 41 1558 9 · 105 661 358 0.007833ms

Table 3. Example of encoding times (for IDGHV scheme).

PIE is also implemented and available at http://api.inkasso.obscura.algemetric.com/login, a web

application for insight generation and visualization over encrypted data. For encoding purposes,

any number at least 128 bits in length is enough to encode a data set with more than 4 million

records. Moreover, for this type of application, 128-bit primes suffice for encoding. However, the

actual sizes of the primes depend on the underlying HE scheme.

References

[1] H. Chen, K. Laine, R. Player, and Y. Xia. High-precision arithmetic in homomorphic encryption. In CT-RSA. Springer, 2018.

[2] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic encryption over the integers.

In Eurocrypt. Springer, 2013.

[3] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch., 2012.

https://www.algemetric.com HE Standards Meeting, Geneva, September 2022 info@algemetric.com

