

PIE: *p*-adic Encoding for High-Precision Arithmetic using Homomorphic Encryption

Motivation

$$\frac{x}{y} = \sum_{j=n}^{\infty} a_j p^j = a_n p^n + a_{n+1} p^{n+1} + \dots,$$

Let g be a positive integer and $N = \lfloor \sqrt{(g-1)/2} \rfloor$. $\mathcal{F}_{N,q}$ is the input space. Since it is not closed under + and \cdot , we define $\mathcal{G}_M = \{x/y \mid |x|, |y| \leq M\} \subseteq \mathcal{F}_{N,q}$ as the message space. Encoding and decoding are defined as follows: p-adic numbers, plaintexts, and the encoding function PIE.Encode $\left(\frac{x}{y}\right)$. For $\frac{x}{y} \in \mathcal{F}_{N,g}$ output **PIE.Decode**(z). For $z \in \mathbb{Z}/g\mathbb{Z}$, output (1)The smaller M is relative to N, the deeper the circuits with which PIE is compatible. Rational FHE.Encrypt PIE.Encode inputs setup **PIE** with Compute on FHE-compatible ciphertexts parameters Rational FHE.Decrypt PIE.Decode 🕶 outputs Figure 1. Attaching **PIE** to an **FHE** scheme. (2)**PIE with an AGCD-based Batch FHE** We attach **PIE** to the batch integer FHE scheme (**IDGHV**) from [2]. (3) Choose the public parameters Q_1, \ldots, Q_ℓ of **IDGHV** to be distinct odd primes, let $g = \prod_{i=1}^{\ell} Q_i$, and $N = \lfloor \sqrt{(g-1)/2} \rfloor$. We encode and decode as follows: **IDGHV.Encode.** For $m \in \mathcal{G}_M$, output (**PIE.Encode** $(m) \mod Q_1, \ldots, \mathsf{PIE.Encode}(m) \mod Q_\ell$) **IDGHV.Decode.** For $(h_1, \ldots, h_\ell) \in \mathbb{Z}/Q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/Q_\ell\mathbb{Z}$, compute $h = \mathsf{CRT}_{Q_1, \ldots, Q_\ell}(h_1, \ldots, h_\ell)$, then output PIE.Decode(h)(4) The set $\mathcal{P}_{d,t}$ is the set of multivariate polynomials with integer coefficients, degree d, and ℓ_1 norm at most t. Encoding correctness, i.e. Decode(Encode(m)) = m, is ensured by choosing $M \le \left(N/t\right)^{1/dt}.$ (5) **PIE with an RLWE-based FHE** We attach **PIE** to a modified version [1] of the Fan-Vercauteren (**FV**) scheme [3], which we call **ModFV**. The message space of **ModFV** is the ring $\mathbb{Z}/(b^n + 1)\mathbb{Z}$, for public HE parameters b and n. We distinguish (for analysis) two cases: b prime and b composite. The choice of b decides the set of rationals which can be encoded gcd(x,y) = 1ModFV.Encode. For $x/y \in \mathcal{G}_M \subseteq \mathcal{F}_{N,b^n+1}$, output PIE.En

$$\frac{x}{y} = \sum_{j=n}^{r-1} a_j p^j + O(p^r).$$

$$\frac{x'}{y'}p^v$$
, for $v \ge 0$ and $gcd(x', p) = gcd(y', p) = 1$

$$\mathcal{F}_N = \left\{ \frac{x}{y} : 0 \le |x| \le N, 1 \le y \le N, \gcd(x, y) = \gcd(y, p) = 1 \right\}$$

$$\mathsf{MEEA}(x_0, x_1) \longrightarrow \left((-1)^{i+1} x_i, \ (-1)^{i+1} y_i \right), \quad i \ge 0$$

Rational data are frequently used in many real-world settings such as finance, health care, and business intelligence. Further, these data must often be composed in ways which require addition and multiplication of rational numbers. *p*-adic representation: If $\frac{x}{y} \in \mathbb{Q}$ and *p* is a prime then we have where $0 \le a_i < p$ and $n \in \mathbb{Z}$. An r-segment p-adic representation, a.k.a Hensel code, simply truncates the above sum after j = r - 1. I.e., A *p*-adic *integer* is a *rational* which can be rewritten in the form Given a prime p and an integer $r \ge 1$, let $N = \left\lfloor \sqrt{\frac{p^r - 1}{2}} \right\rfloor$. The Farey rationals are defined as \mathcal{F}_N is a set of *p*-adic integers. Given $x_0, x_1 \in \mathbb{Z}$, where x_i, y_i are generated by the extended Euclidean algorithm (EEA). The MEEA simply stops **EEA** early (once $|x_i| \leq N$). A homomorphic mapping: The injective mapping $H_{p^r}: \mathcal{F}_N \to \mathbb{Z}/p^r\mathbb{Z}$ and its inverse are defined as H_{p^r} gives a unique representation of each element of \mathcal{F}_N in $\mathbb{Z}/p^r\mathbb{Z}$. **General extension:** The above results can be extended when p^r is replaced by an arbitrary positive integer $g = p_1^{r_1} \cdots p_k^{r_k}$ to define $H_g : \mathcal{F}_{N,q} \to \mathbb{Z}/g\mathbb{Z}$, where the domain is the set of *extended* Farey rationals:

$$H_{p^r}\left(\frac{x}{y}\right) = xy^{-1} \bmod p^r,$$
$$H_{p^r}^{-1}(h) = \mathsf{MEEA}(p^r, h)$$

$$\mathcal{F}_{N,g} = \left\{ \frac{x}{y} \, \middle| \, \exists h \in \mathbb{Z}/g\mathbb{Z} \text{ s.t. } \mathsf{MEEA}(g,h) = (x,y), \, \gcd(x,g) = \gcd(y,g) = g \operatorname{cd}(y,g) = g \operatorname{cd}(y$$

Gaetan Delavignette¹

¹Algemetric

PIE Encoder

ModFV.Decode. For $h \in \mathbb{Z}/(b^n + 1)\mathbb{Z}$, output **PIE.Decode**()

ModFV is also paired with a rational encoder, however, for fixed *b*,*n* **PIE** has a much larger input space.

Luke Harmon¹ Arnab Roy¹ David Silva¹

t
$$H_g\left(\frac{x}{y}\right) \in \mathbb{Z}/g\mathbb{Z}.$$
 (6)

$$H_q^{-1}(z) \in \mathcal{F}_{N,q}.$$
(7)

ncode
$$(x/y) \in \mathbb{Z}/(b^n+1)\mathbb{Z}$$
.
(*h*).

b	n	PIE	CLPX	PIE/ModFV
150	2^{11}	$150^{2^{11}} + 1$	$\frac{150^{2^{11}}-1}{149}$	143
824	2^{10}	$824^{2^{10}} + 1$	$\frac{824^{2^{10}}-1}{823}$	1000
1534	2^{12}	$1534^{2^{12}} + 1$	$\frac{1534^{2^{12}}-1}{1533}$	1429

Table 1. Comparison of input space sizes for PIE and ModFV encoder when $b^n + 1$ is prime.

b	n	PIE	ModFV	PIE/ModFV
3	12	442765	265720	1.7
5	8	324646	97656	3.3
7	8	4787969	960800	5
30	8	$\approx 4 \times 10^{11}$	$\approx 2.2 \times 10^{10}$	16.7
210	4	$\approx 1.2 \times 10^9$	$\approx 9 \times 10^6$	125
210	6	$\approx 4.4 \times 10^{13}$	$\approx 4.1 \times 10^{11}$	111

Table 2. Comparison of input space sizes for PIE and ModFV encoder when $b^n + 1$ is composite.

PIE is implemented in C++ using NTL and GMP for large integer, vector, and polynomial arithmetic, and Bazel as the build system, and is available at https://github.com/Algemetric/pie-cpp. PIE can be built as a stand-alone fractional encoding library or in conjunction with either **IDGHV** or **ModFV**.

The implementation is currently not optimized for performance, therefore the numbers below aim to highlight the overhead of adding **PIE** to an HE scheme.

λ	ℓ	ρ	η	γ	au	$\log_2(\text{prime})$	Encoding time
50	6	60	4248	$5.3 \cdot 10^{8}$	661	1500	0.006ms
52	37	41	1558	$9 \cdot 10^5$	661	358	0.007833ms

Table 3. Example of encoding times (for IDGHV scheme).

PIE is also implemented and available at http://api.inkasso.obscura.algemetric.com/login, a web application for insight generation and visualization over encrypted data. For encoding purposes, any number at least 128 bits in length is enough to encode a data set with more than 4 million records. Moreover, for this type of application, 128-bit primes suffice for encoding. However, the actual sizes of the primes depend on the underlying HE scheme.

- In Eurocrypt. Springer, 2013.

Library and Demo

References

[1] H. Chen, K. Laine, R. Player, and Y. Xia. High-precision arithmetic in homomorphic encryption. In CT-RSA. Springer, 2018. [2] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic encryption over the integers.

[3] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch., 2012.