Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

NaLamK

Sustainable Agriculture with Artificial Intelligence

Dr. Raghu Chaliganti Interactive and Cognitive Systems (ICS) Fraunhofer HHI – Heinrich Hertz Institute

Background Why NaLamKI

- Cloud-based
- heterogeneity and data sovereignty aware
- GAIA-X compliant
- model-based AI approach to increase agricultural sustainability and competitiveness

Ecological aspects	Economic aspects	Social Aspects
 Water protection Preserving biodiversity Reduction of emissions Maintaining soil nutrient cycles 	 Cost efficiency Flexibilization of processes Optimized personnel Securing harvests in times of CC 	 Training and qualification Technical personnel support Acceptance of technical innovations
Market economy and regulatory aspects		
Comply with fertilizer regulations / Reduce documentation effort / Data protection/sovereignty / Acceptance of new business models / High operational heterogeneity / Create market-ready, decentralized approaches		

About NaLamKI

- Al services are being developed for use in agriculture, which evaluate data from conventional and autonomous agricultural machinery, satellites, and drones, combine them in a software service platform and make results accessible via open interfaces.
- AI methods have to be adapted to agricultural use cases
- Domain-specific data must be processed and made accessible for training the models

About NaLamKI

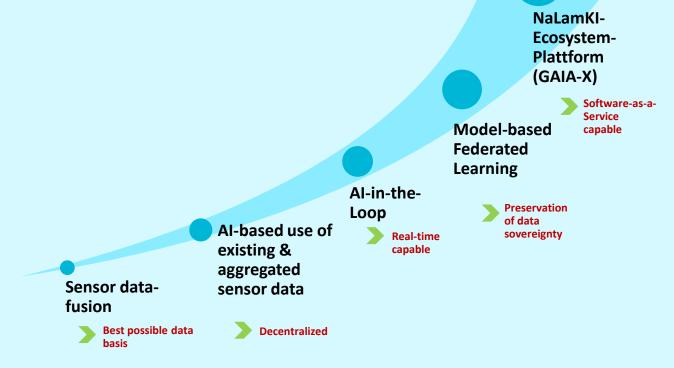
Raghu Chaliganti

through remote sensing, soil sensing, robotics, manual data collection, and inventory data)

Agricultural practices can be optimized in a more sustainable, efficient, and transparent manner

Aggregating data (sensor and machine data obtained

By building an International Data Space for Agriculture (IDSA) and GAIA-X compliant services, the platform will act as interoperability between different centralized and decentralized cloud providers and users.


NaLamKI- platform

NaLamKI Innovation potential

- Technical feasibility
- High-quality data basis for the learning phase of the algorithms
- Results can be individually transferred and used in the competence domains of the individual partners
- Both individual and overall solutions can be implemented

NaLamKi Application Potential

Cloud Level

- SaaS/AlaaS platform
- GAIA-X compliant architecture
- Openness to third-party providers while maintaining data sovereignty

NaLamKI

Operational Level

- AI-based collection
- Documentation (output quantities, transparency)
- AI-based resource-optimized and cost-efficient process and application control
- Modeling of the overall "field" system

Maschine Level

- Driving strategy, autonomy, service and maintenance applications
- Remote control
- Sensor calibration

Demonstrators

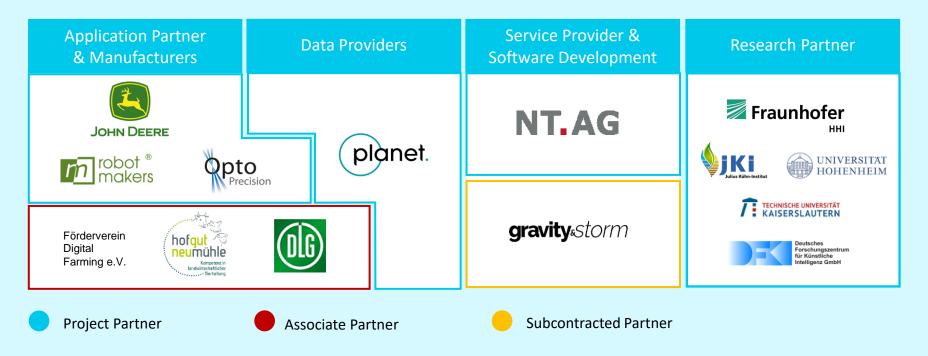
1 Area-specific crop protection measures

2. Remote sensing detection of plant infections

3. Orchard inspection

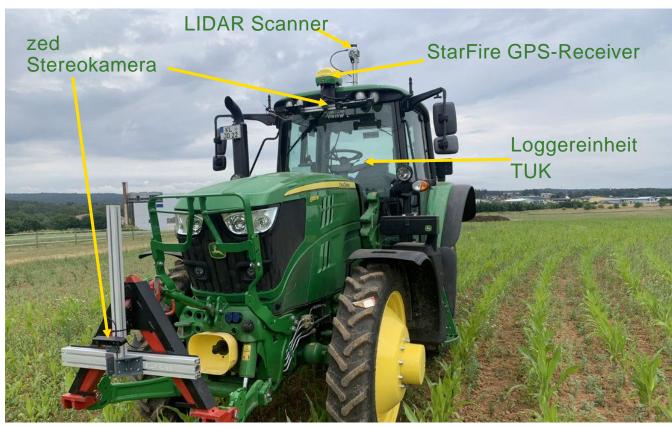
4. Environment inspection by means of a (partially) autonomously driving tractor

5. GAIA-X-compliant cloud infrastructure for Albased Software as a Service solution

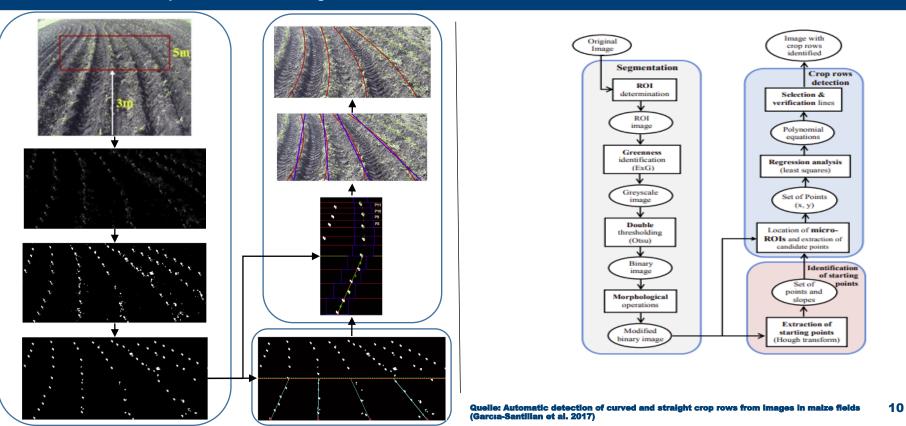

6. Multi-scale information retrieval with remote sensing

7. Farmer dashboard for visualization of project data

8. 5G sideline communication between drones and ground vehicles.


NaLamKI - Partners

Demonstrator 1: Precise application of crop protection measures and area-specific plausibility of soil moisture with the aid of AI on arable land and grassland


Physical setup

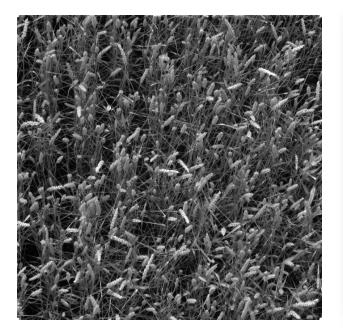
- Ground penetrating
 radar in planning
- Expandable with further sensors

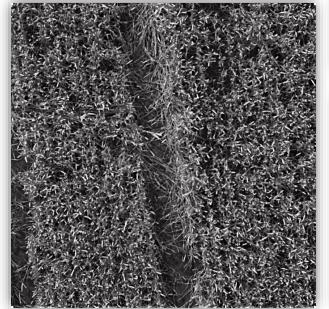
Methods for computer-visual row recognition - DBMR

Demonstrator 2:

Remote sensing detection of plant infections

Drones


Flight Planning



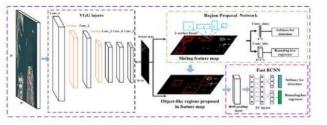
3200 Bilder und 10GB Daten pro Flug Alle 0,2s ein Foto Ground Resolution: 0,06cm Footprint: 1,1m x 1,1m Flight Time 12min Area 1800m² bei 2,5km

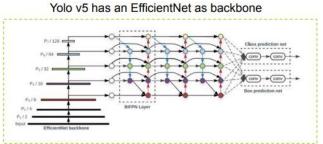
Temporal images of wheat multispectral camera - 5m and 40m


Demonstrator 3: Inspection of orchards

Inspection of Apple plantations

 The autonomous vehicle from Robot Makers was developed by TU Kaiserslautern with sensors for data acquisition (currently two stereo camera systems and a 360° LIDAR).




Faster RCNN relies on VGG

Open question: How well do models that are trained on MinneApple perform on our future data?

Detection of fruits (MinneApple dataset): Comparison of Models

- · Models:
 - Faster RCNN (Baseline Network for MinnieApple dataset)
 - · YOLO v5
- Speed/Computational Cost
 - YOLO v5 model runs about 2.5 times faster
- Mean Average Precision:
 - Faster RCNN: maP .82
 - YOLO v5: maP .79
- \rightarrow Beide Modelle haben eine vergleichbare mAP und funktionieren gut (see left side).
- → Generell ist YOLO schneller und erkennt auch sehr kleine Objekte gut
- → YOLO v5 is advantageous over Faster RCNN.

© Fraunhofer HHI | Date | 17

Prediction: Ripe Apple with Defect

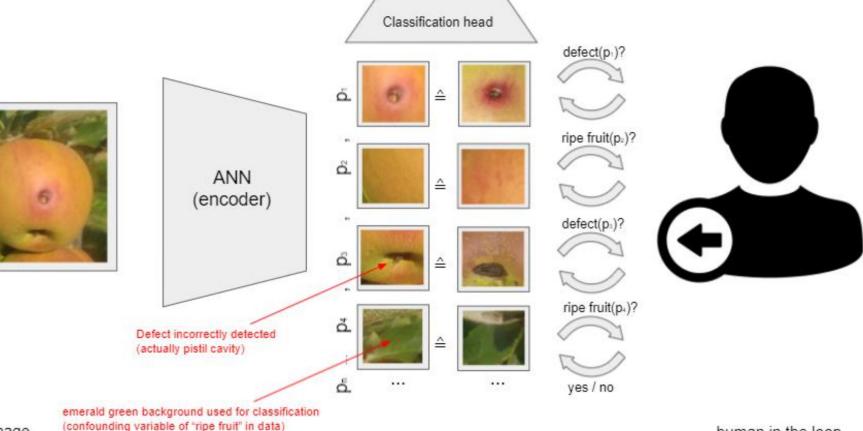


image patches & look-alikes (prototypes)

human in the loop

image

vehicles

Thank you

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

NaLamKI

https://nalamki.de

