

Developing a deep-learning standard for smallholder farm yield prediction

Prof. Dr. Masahiro Ryo, Juan Camilo Rivera, Stefan Stiller

Brandenburg University of Technology Cottbus-Senftenberg, Germany Group leader of the research unit "Artificial Intelligence for Smart Agriculture" at ZALF

Artificial Intelligence for Smart Agriculture

We offer AI-powered Nature-based Solutions

The Global Sustainability Challenges

3 GOOD HEALTH AND WELL-BEING

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

15 LIFE ON LAND

l?

2 ZERO HUNGER

8 DECENT WORK AND ECONOMIC GROWTH

14 LIFE BELOW WATER

ND POVERTY

(0)

13 CLIMATE ACTION

Improving agriculture & nature conservation is key!

5 GENDER EQUALITY

Ø

11 SUSTAINABLE CITIES

17 PARTNERSHIPS FOR THE GOALS

&

6 CLEAN WATER AND SANITATION

۵

CONSUMPTION AND PRODUCTION

SUSTAINABL

SUSTAINABLE G ALS

4 QUALITY EDUCATION

10 REDUCED INEQUALITIES

^

 $\langle = \rangle$

16 PEACE JUSTICE AND STRONG INSTITUTIONS

SUSTAINABLE DEVELOPMENT GOALS

How food connects all the SDGs

Johan Rockström and Pavan Sukhdev present new way of viewing the Sustainable Development Goals and how they are all linked to food

Smallholder farmlands

- 84% of the world's 570 million farms are smallholdings of <2ha (Lowder et al. 2016)
- Many smallholder farmers are poor and in hunger
- Small farms can achieve good yields but need lots of human labor and input (Ricciardi et al. 2021)
- World's smallholder farmlands produces 30% of global food supply (Ricciardi et al. 2018; note that if it includes family farms, it accounts for 70-80%)

Lowder et al. 2016 World Development, 87, 16-29; Ricciardi et al. 2021 Nature Sustainability, 1-7; Ricciardi et al. 2018 Global Food Security, 17, 64-72;

To develop a standardized framework for making deep learning prediction more reliable and applicable for smallholder farming

To capture an overview of potential technical challenges for deep learning implementation for smallholder yield prediction

→ Small data with autocorrelation, explainability, and context-dependence

Deep learning implementation flow

Data collection	Small data, observation bias and error
Data processing	Few response data/label
Deep learning model training	Sensitive to a change in data & strategy
Model evaluation	Overoptimistic report & black-box
Farmers' feedback	Lack of trust; not seeing benefit
App development & application	Low accuracy in new sites

Deep learning implementation flow

	Small data, observation bias and error
Data processing	Few response data/label
Deep learning model training	Sensitive to a change in data & strategy
Model evaluation	Overoptimistic report & black-box
	Lack of trust; not seeing benefit

Deep learning implementation flow

Target fields

Case study 1: Within-field yield variability

PatchCROP (Grahmann et al. 2021)

9

Main Techniques

Deep Learning (black-box model)

Crop yield [dt/ha] regressed using Convolutional Neural Network (*LeCun et al. 1999*) with 6 convolutional layers with 5 fully connected layers; pytorch library

Comparing multiple modeling strategies:

- 1) Learning from the data (baseline)
- 2) Fine-tuning a pre-trained model: Transfer learning with a big dataset
- 3) Fine-tuning a pre-trained model: Self-supervised learning

Our hypothesis: #3 > #1 > #2

 \rightarrow "transfer learning" from a big dataset is not a clever solution

Modeling strategy: Transfer learning with a large generic dataset

14M images; 21000+ classes (ResNet50)

Modeling strategy: Transfer learning with the same dataset

Comparing two validation strategies:

- 1) Random 75:25 split cross validation
- 2) Spatially structured 75:25 split cross validation

Our hypothesis: #2 is more honest, although #1 is often employed → Spatial autocorrelation in the data is quite overlooked in DL applications

Spatial cross validation vs random sampling

training data

https://towardsdatascience.com/spatial-cross-validation-using-scikit-learn-74cb8ffe0ab9

Validation method comparison

16

Target fields

17

Yield estimate with object detection

YOLO: Object detection algorithm for explainability

C_4

C_1

C_3

Model Detection

Redmon et al. 2016 You Only Look Once https://arxiv.org/abs/1506.02640

Yield prediction

Yield estimate with object detection

Can the model performance Improve by considering...

The local soil condition
The surrounding landscape
The climate condition

Take-home message

A standardized framework is needed for making deep learning prediction truly applicable for smallholder farmers

- self-supervised learning, autocorrelation data by employing spatial cross validation method,
- multi-scale influence by combining remote sensing and mobile phone-taken images
- increasing explainability by employing explainable artificial intelligence (XAI) methods.

Data collection (timing, distribution etc.) Data processing (labelling, curating etc.) Deep learning model training Model evaluation (validation & test) Farmers' feedback

App development & application

Thank you for your attention.

Leibniz Centre for Agricultural Landscape Research (ZALF)

Artificial Intelligence for Smart Agriculture

We offer AI-powered Nature-based Solutions

Masahiro.Ryo@zalf.de Contact: Prof. Dr. Masahiro Ryo