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The Global Sustainability Challenges
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Improving agriculture & nature conservation is key!



Smallholder farmlands
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• 84% of the world’s 570 million farms are smallholdings of <2ha (Lowder et al. 2016)

• Many smallholder farmers are poor and in hunger

• Small farms can achieve good yields but need lots of human labor and input 
(Ricciardi et al. 2021)

• World‘s smallholder farmlands produces 30% of global food supply (Ricciardi et al. 

2018; note that if it includes family farms, it accounts for 70-80%)

Lowder et al. 2016 World Development, 87, 16-29; Ricciardi et al. 2021 Nature Sustainability, 1-7; Ricciardi et al. 2018 Global Food Security, 17, 64-72;



Research objective
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To develop a standardized framework for making deep learning prediction 

more reliable and applicable for smallholder farming

To capture an overview of potential technical challenges for deep learning 

implementation for smallholder yield prediction

→ Small data with autocorrelation, explainability, and context-dependence



Deep learning implementation flow
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Data collection

Data processing

Deep learning model training

Model evaluation

Farmers’ feedback

App development & application

Small data, observation bias and error

Few response data/label

Sensitive to a change in data & strategy

Overoptimistic report & black-box

Lack of trust; not seeing benefit

Low accuracy in new sites
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Deep learning implementation flow
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Data processing

Deep learning model training

Model evaluation

Few response data/label

Sensitive to a change in data & strategy

Overoptimistic report & black-box

Self-

supervised 

learning

Spatial 

cross 

validation

Explainable 

AI method



Target fields
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Case study 1: Within-field yield variability 
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1200m

PatchCROP (Grahmann et al. 2021)

72m

▪ Yield observation (190 per patch)

▪ Radiometric: RGB, multi-spectral (R, G, B, NIR, RE)

~14cm (MS), ~2cm (RGB)



Crop yield [dt/ha] regressed using Convolutional Neural Network (LeCun et al. 1999) 

with 6 convolutional layers with 5 fully connected layers; pytorch library

Main Techniques
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Input

Deep Learning

(black-box model)

PredictionDeep Learning

10 dt/ha

4 dt/ha



Modeling strategy
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Comparing multiple modeling strategies:

1) Learning from the data (baseline)

2) Fine-tuning a pre-trained model: Transfer learning with a big dataset

3) Fine-tuning a pre-trained model: Self-supervised learning

Our hypothesis: #3 > #1 > #2

→ “transfer learning” from a big dataset is not a clever solution



Modeling strategy: Transfer learning with a large generic dataset
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14M images; 21000+ classes (ResNet50)

Input 

Image modified from Lemley et al. 2017



Modeling strategy: Transfer learning with the same dataset
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To predict crop yield

To predict a mean RGB

Image modified from Lemley et al. 2017



Validation strategy

14

Comparing two validation strategies:

1) Random 75:25 split cross validation

2) Spatially structured 75:25 split cross validation

Our hypothesis: #2 is more honest, although #1 is often employed

→ Spatial autocorrelation in the data is quite overlooked in DL applications



Spatial cross validation vs random sampling
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https://towardsdatascience.com/spatial-cross-validation-using-scikit-learn-74cb8ffe0ab9



Validation method comparison
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Training Test

Random 75:25 split 

Spatial 75:25 split 



Target fields
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Yield estimate with object detection
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Peru



YOLO: Object detection algorithm for explainability
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Model 

Detection

Redmon et al. 2016 You Only Look Once https://arxiv.org/abs/1506.02640



Yield prediction
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Yield estimate with object detection
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Peru

Can the model performance

Improve by considering…

1) The local soil condition

2) The surrounding landscape

3) The climate condition



Take-home message
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A standardized framework is needed for making deep 

learning prediction truly applicable for smallholder 

farmers

• self-supervised learning, autocorrelation data by 

employing spatial cross validation method, 

• multi-scale influence by combining remote sensing and 

mobile phone-taken images

• increasing explainability by employing explainable 

artificial intelligence (XAI) methods. 



Thank you for your attention.

Prof. Dr. Masahiro Ryo         Masahiro.Ryo@zalf.deContact:


