Neural Network Compression (NNC, ISO/IEC 15938-17)

Werner Bailer Al and Multimedia Workshop, 2022-01-18

Outline

- Context & state of the art
- Standard: need and design considerations
- Coding tools
- Performance
- Ongoing work and conclusion

Context

Artificial neural networks are widely used, e.g. in multimedia

- visual and audio content recognition and classification
- speech and natural language processing
- Deep learning makes use of very large networks
 - many layers with nodes and connections
 - parameters/weights attached to each of them (e.g. convolution operations)

Context

Training

Δ

- learn parameters from data
- typically once, on powerful infrastructure
- updates or adaptations in target environment may be necessary

Inference

- use the trained network for prediction
- needs network with all its parameters, i.e., large amount of data to be transmitted and processed \rightarrow focus: small size to be transmitted
- often used on resource constrained devices (mobile phones, smart cameras, edge nodes, ...)
 - \rightarrow focus: low memory and computational complexity during inference

SotA in NN Compression

typically three steps

5

- reduction of parameters, e.g.
 - eliminating neurons (pruning)
 - reducing the entropy of a tensor
 - decomposing/transforming a tensor

Quantization: less bits per weight

Han et al., ICLR 2016

- reducing the precision of parameters (i.e. quantization)
- performing entropy coding

Relation to Network Architecture Search (NAS)

- finding an alternative architecture and train
 - architecture search is computationally expensive

- **kWh**·PUE Model Hardware Power (W) Hours CO_2e Transformer_{base} P100x8 1415.78 12 27 26 Transformer_{bia} P100x8 1515.43 84 201 192 ELMo P100x3 517.66 275 262 336 **BERT**_{base} V100x64 12,041.51 79 1507 1438 BERT TPUv2x1696 656.347 626,155 NAS P100x8 1515.43 274.120 NAS TPUv2x1 32.623 GPT-2 168 TPUv3x32
- training is then done using e.g. knowledge distillation, teacher-student learning

- [Strubell, et al. ACL 2019]
- Faster NAS methods have been proposed, e.g. Single-Path Mobile AutoML [Stamoulis et al., IEEE JSTSP 2020]
- needs also access to full training data, while fine-tuning could be done on partial data or application specific data

Relation to target hardware

- Optimising for target hardware
 - supported operations (e.g., sparse matrix multiplication, weight precisions)
 - relative costs of memory access and computing operations
- training a network, derive network for particular platform
 - first approaches [Cai, ICLR 2020]
 - no reliable prediction of inference costs on particular target architecture
 - in particular, prediction of speed and energy consumption
 - cf. autotune in inference of DL frameworks

Need for a standardised interface

Standardization in MPEG (ISO/IEC JTC1 SC29)

- Develop interoperable compressed representation of neural networks
- Leverage the know-how in the MPEG on compression of various types of (multimedia) data
- Enable multimedia applications to benefit from the progress in machine learning using deep neural networks
- Cover a broad set of relevant use cases

9

selected image classification, visual content matching, content coding and audio classification as applications in which technology is validated

Design Considerations

- Interoperability with exchange formats (NNEF, ONNX) and formats of common DL frameworks
- Reuse existing approaches for representing topology
- Agnostic to inference platform and its specificities

10

Different types of networks, applications, ... may be best served by different compression tools

Evaluating compression technologies

Compression ratio

- Reconstruction of original parameters (cf. PSNR for multimedia data)
 - not a useful metric
 - performance in target application (e.g., image classification) needs to be measured (cf. perceptual quality metrics for multimedia)
 - requires models and data sets for each target application
- runtime/memory consumption
 - of the encoding/decoding process
 - inference using the resulting model

Evaluating compression technologies

Standard as a Toolbox

Parameter Reduction

- Sparsification
 - General sparsification
 - Micro-structured sparsification
- Pruning
 - estimate importance of weights to decide about pruning neurons
- Low-rank decomposition
 - approximate tensor as product of decomposition result (limiting number of parameters)
- Unification
 - generalisation of micro-structured sparsification (values other than 0)
- Batchnorm folding, local scaling
 - store batchnorm parameters, and apply to weights (better compressability of weights)
 - scaling factor per row (no additional parameters if used together with BN folding)

Quantisation

- Uniform Nearest Neighbor Quantization
- Codebook Quantization

- Dependent Scalar Quantization
 - Trellis-coded quantisation
 - two scalar quantisers, and procedure for switching between them (state-machine with 8 states)

Entropy Coding

DeepCABAC

- Adaptation of Context-adaptive Binary Arithmetic Coding (CABAC)
- Binarization
- Context-modelling
 - separate models for each of the flags
 - select from a fixed set of models
- Arithmetic coding to regular and bypass bins

Decoding

Output of encoded tensor

- Integer or floating point
- Block: set of combined tensors (e.g., components of decomposed tensor)
- Parallel decoding of parts of a tensor is supported
 - option to specify entry points for the parts during encoding

Interoperability with exchange formats

- Include network topology in encoded bitstream
 - ONNX, NNEF, Tensorflow, PyTorch

- Supports encoding just some of the tensors
- Compatibility with quantisation formats supported in those formats
- Include encoded tensors in exchange format
 - Recommended approach for NNEF and ONNX

Performance

NNR TRANSPARENT CODING RESULTS				
Model	c_r in %	top-1 / top-5 acc. reconstr.	top-1 / top-5 acc. original	Orig. size (bytes)
VGG16	2.98	70.51 / 89.54	70.93 / 89.85	553.43 M
ResNet50	6.54	74.42 / 91.80	74.98 / 92.15	102.55 M
MobileNetV2	12.18	71.13 / 90.06	71.47 / 90.27	14.16 M
DCase	4.12	58.15 / 92.35	58.27 / 91.85	467.26 k
Model	c_r in %	PSNR / SSIM reconstructed	PSNR / SSIM original	Orig. size (bytes)
UC12B	17.34	29.98 / 0.954	30.13 / 0.956	304.72 k

Performance

Ongoing work: incremental compression

- Use cases that need to send updated models
 - e.g. deploy to mobile devices, federated learning
- Encode model w.r.t. base model
 - support tensor updates and structural changes,
 e.g. transfer learning with different number
 of output classes
- Initial results

22

updates in distributed training can be represented at <1% of the base model size</p>

Conclusion

- standard for compressing NN parameters
- compresses to less than 10% without performance loss
- interoperability with exchange formats
- status
 - compression standard (ISO/IEC 15938-17) going to FDIS ballot
 - reference software (ISO/IEC 15938-18) under CD ballot
 - work on incremental compression ongoing (to become 2nd ed. of pt. 17)

THE INNOVATION COMPANY

Werner Bailer Co-chair of MPEG AhG on Neural Network Compression werner.bailer@joanneum.at

This work has received funding from the European Union's Horizon 2020 research and innovation programme, under grant agreement no. 951911 Al4Media (https://ai4media.eu).

Al4media

www.joanneum.at/digital