Overview of technologies considered in JVET’s neural
network-based video coding exploration
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Introduction

= The Joint Video Experts Team (JVET) began formal exploration

experiments studying neural network-based video coding in
October 2020.

= Interest in this activity has been consistent, and JVET has received
more than 110 technical inputs related to the topic in 2021 and
2022.

= The goal of this presentation is to give an overview of technologies
being proposed and studied.
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Categorization

= Organizing the survey is helped by
categorizing the technologies

= Three major areas of work in JVET:

1. Replacing existing VVC coding
tools (or enhancing them)

2 Introducing post-filtering
operations

3 End-to-end solutions that do not
rely on VVC

= Tool replacement (or enhancement)
is primarily focused on:

1. In-loop filtering
2 Super-resolution
3, Intra-Prediction
a, Inter-Prediction
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Categorization

= Focus of JVET activity
= Activity in all categories

= Largest number of contributions
are in:
= In-loop filtering
= 51 contributions
= ~43% of technical input
= Super-resolution
= 22 contributions

= Additional observation

= Technical overlap between
in-loop filter, post filter
and super-resolution
methods
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NEURAL NETWORK-BASED TECHNOLOGY STUDIED DURING 2021-2022




= Overview
= The rest of the presentation will be organized as follows:

= Filtering methods
= In-loop filtering
= Post-Filtering
= Super-Resolution

= Intra-prediction methods

= Inter-prediction methods

= End-to-end methods

= NN environments

= Conclusions and more information
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Filtering Methods: In-Loop Filtering
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Loop Filtering

= Example of Loop Filtering Technology

= Inputs / \
Reconstructed samples J‘ &
rec_yuv

| |
%
. =
= Predicted samples % N ResBlocks
ReLU é%
= Partition parameters % S S < output_yuv
. H —_— — — —_— X — ———»C
= Quantization parameters pred vy Ol — | g z o
mReLU cat -ReLU Sl;de=2 “ PixelShuffle
C/°é
= Common features v [0
= Sequence of CNNs =y ‘ o
. QGQ (/OQ C/O
ResBlock
= Residual blocks e P —ES- 5y
= Shorter and longer skip Stice QP wy W w v
connections \\ /
= Attention mechanisms VETY0078
N=8
Channels = 64

Patch size = 144x144
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Loop Filtering

. Example NN
= Loop Filtering VVC Loop Filter Loop Filter
= Location of the neural network within
the loop filter is an area of exploration LMCS LMCS
= VVC design contains four major in-loop
blocks v
= LMCS (Luma Mapping and Chroma DeBlock Y
Scaling) Neural
= Deblocking i Network
= SAO (Sample Adaptive Offset) SAO
= ALF (Adaptive Loop Filter)
= Investigations v 4
= Adding neural networks to the in- ALF, CC-ALF ALF, CC-ALF

loop process

= Replacing elements of the in-loop
blocks
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Loop Filtering

. Example NN Example NN Example NN
VVC Loop Filter P . P . P .
Loop Filter Loop Filter Loop Filter
LMCS LMCS LMCS LMCS
v
v DeBlock
DeBlock Y v Y Y
Neural SAO DeBlock Neural
Network 7 v Network
A 4
SAO Neural SAO
Network \—t ;
A 4 A 4 *
ALF, CC-ALF ALF, CC-ALF ALF, CC-ALF ALF, CC-ALF
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Loop Filtering

= Additional aspects under study

= Benefit of cross channel |
correlation

ResBlock
3x3 Conv (3x3xNxN)
RelU

= Model parameter switching

3x3 Conv (3x3xNx1)

3x3 Conv (3x3x3xN)
RelU
ResBlock

= Networks generally pre-trained
with different weights loaded (a)
depending on conditions, such
as:

ResBlock
3x3 Conv (3x3xNxN)
RelLU
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3x3 C (3x3x2xN)
RelU
ResBlock

= Slice type
(b)

= Chroma type
= Base QP
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Loop Filtering

= Additional aspects under study
= Switching granularity

= Enable network per-frame |

= Enable network per-slice tum

§ 3 E m| 3 § 3 § R uma
= Enable network per-block = FETE LRI :
Chromal -up_sample - : \M:
= Signal from candidate set il ° u
= Switching precision @
= Binary switching S N D 3 AREE
: : . . Slalyl & o[wel B L&l 8L [ come
= Signaling residual scaling factors HEuE B Bt b p
Chroma : : §
= Network architectures - .
= U-Nets (b)
= Transformers JVET-Y0084
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Loop Filtering

Random Access
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Loop Filtering
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Loop Filtering

Random Access

Parameter Memory (MB)
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Filtering Methods: Post Filtering
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Post-Filtering

Inv. Transform \

= Post-Filtering

Bitstream

. . . . Entro
[ | S|m||ar to |Oop fllterlng Decod?r:/g Inv. Quantization
technology l
Prelg;ccr?ion Loop Filter
= Major conceptual ner
rediction
difference is that the neural v

network is placed outside
the coding loop \ /

Reconstructed
Picture
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Post-Filtering

m  Post-Filtering
= Example technology
= Sequence of CNNs
= ResNet blocks
=« Shorter and longer skip connections

= Reconstructed block, neighboring samples, QP
information and boundary strength as input

= Additional features
= Modelis pre-trained
= Scaling parameters transmitted in bit-stream

= Bias terms are refined and transmitted in the bit-
stream
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Post-Filtering

Random Access
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Post-Filtering

Random Access

Parameter Memory (MB)

00625 0125 025 05 1 2 8 16 2 64 128 256 s 1024
’ JVET-X0084
11.00%
10.00% EEL12
EELL6

EE1-1.4 (Test2) WETX0054

= JVET-X0055 (Test 1) oop Filter
a EE1-1.4 (Test1)
-5.00%
-2.00% JVET-X00S5 (Test 2) EE113
-3.00%
IVET-X0111 EEda

JVET-X0126 (CNNLF+NNAMS)
JVET-X0126 (CNNLF)

EE1-15

NES | 19

0
>
A
T
0
%
i
%



Filtering Methods: Super-Resolution
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Super-Resolution

= Super-resolution

= Viewed as a replacement of Reference
Picture Resampling (RPR) in VVC

= RPR allows for changing the resolution
of the sequence within a bit-stream ‘
#ResBlocks=N

E
5
2
8

Conv 3x3, 4

= Neural network solutions are proposed
to replace the RPR operation

= Features are similar to in-loop filtering
and post-processing approaches under
study

| Conv 333, M,s2 |

= Sequence of CNNs

| Concat |
| Concat
Conv 1x1, M

© (]
g 3
E -
3| |&

= ResNets

#ResBlocks=N

= Longer term skip connections and
attention less common (currently)
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Super-Resolution

= Network placement

= Super-resolution experiments do Bitstream
not incorporate switching
resolution within a sequence

= In practice, this means that the
super-resolution network are
located as a post-filter

= Input sequence is down-
sampled and compressed
using VVC

= Reconstructed sequence is
upsampled using super-
resolution network

Entropy
Decoding
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Super-Resolution

= Additional aspects under study

]
s
= Use of different networks for g
3
chroma channels . = B
= Luma-chroma balance R R L -2
o8 B
= Number of parameters and —
networks

= Resolution control
YTGC
= Dynamic down-sampling to
maximize coding efficiency
/%

[concat| [ conv 3@, M52 |

= Fixed down-sampling for
backwards compatibility HRestloske—N
constraint (e.g., 8K support)

Conv 1x1,M
Conv 3x3,4
Pixel_shuffle
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Super-Resolution

= Performance

Observation that super-resolution
techniques primarily work at higher
resolutions and/or lower bit-rates
Majority of data provided to JVET
focuses on low bit-rate 4K/UHD
applications
= July meeting
= Luma gain of 4%
s Chroma loss of 40%
= October and January meeting

= Average chroma loss
decreased but still isolated
issues

LABO RATfD RIES

Random Access 4K (QP27, 32, 37, 42)

Random Access 4K (QP27, 32, 37, 42)

KMAC/pixe!
200 400 600 200 1000 1200 1400 1600 1800 2000



Intra-Prediction
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Intra-Prediction

= Intra-Prediction (Example)

= Predict block Y na\ ¢ {oremacemns) X o))
= Small block sizes , I , __postpmcessmg
= min(h,w) <8 hl e T z
= Three fully connected networks NN "l
= n,=n,=min(h,w) " e
= Large blocks sizes Small Blocks
= Convolutional network with six Large Blocks
layers I
= n,=h/2;n=w/2 "a:‘—WXoﬂ[fh,W"(.; 61,,") | attening |
= Note: Prediction of grpldx (used for 1
subsequent VVC processes) 2n|| | x, o{ fu' (5 On") | fattening | —
“n . .
= Recent emphasis has been on reducing IVETX0118
complexity
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Intra-Prediction

= Additional Aspects
= Cross-component linear model (ccLm)
prediction

= Goal: Improve/replace existing
CCLM mode of VVC

= Use of Auto-encoders for intra-
prediction

=« Feature(s) extracted during
encoding stage transmitted to
decoder

= Prediction and residual process
replaced by auto-encoder

= Auto-encoder added as a VVC
mode (existing modes remain)
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Intra-Prediction
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Intra-Predi

Random Access

Parameter Memory (MB)
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Inter-Prediction
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Inter-Prediction

= Virtual reference frames

= Goal: Use neural network to synthesize
a reference frame for prediction

Reference Frames
from DPB

= Current emphasis

L
. . . [~ : Transform, | . . i piriem i Mot
= Incorporating QP information () scaling g [T Etropy |Bitren L Refsence | Sen

Quantization = Picture List

= Reducing complexity ' I

=« Improved training

Compensation

Scaling &
Inverse Transform

= Reported results J} |
i NE |QP Map NN
= 1.4k MAC/sample

N\
N | N
Intra | L 3
Prediction —_
t> Fmid

= BD-Rate gains: -2.01% (Random @ ip

\v In-loop Filter | L Fpe @ g Interpolated
N o Frame
Access) o [T
Prediction
4

| Decoded
Picture Buffer |

!

L

4

m  Other Approaches
= Use neural networks to filter the motion

compensated prediction JVET-Y0096
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End-to-End
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= End-to-end Technologies

= Small number of proposals on end-to-end
video compression

= General approach
= Compress intra frames using existing
standards
= Synthesize motion information and
texture

= Informed by low resolution version
of motion compensated frame

= Multi-frame resolution
enhancement

= Multi-frame texture transfer
or
= Auto-encoder framework
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NN Environments
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= NN Environments

= JVET does not have an official
development environment

= Participants commonly use a
mixture of TensorFlow and
PyTorch

= JVET is also studying a proposal for
a “Small Ad-hoc Deep Learning
Library”

= Asserted to have few
dependencies and compatible
with BSD-3 licensing clauses

= Available in JVET-W0181 and
JVET-Y0110
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Footprint
Optimization
Compatibility

Layer
Supports

Type
support
Quantization

Small Ad-hoc Deep Learning Library (SADL)
Pure C++, header only.
~3200 LOC, library ~200kB, no dependency
Some SIMD at hot spots (best effort)

TF 1.x, 2.x, PyTorch converters

constants, add, maxPool, matMul, reshape,
ReLU,conv2D, mul, concat, max, leakyReLU

float, int32, int16, int8

Support adaptive quantizer per layer

JVET-W0181



Conclusions and Additional Info
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Conclusions

= Conclusions

= Overview of technologies considered in JVET’s neural network-based
video coding exploration

= Activity includes enhancement of existing video coding tools,
introduction of post-filters, and end-to-end video coding system

= Significant development in neural network-based filtering
= In-loop filtering, post-filter, and super-resolution
= Observed gains of (up to) 13% in random access
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Additional Information

= More information

= All documents available at https://jvet-experts.org/
= Useful pointers

AHG Report JVET-UO011 JVET-v0011  JVET-WO0011  JVET-X0011 JVET-Y0011

Exploration JVET-U0023 JVET-V0023  JVET-WO0023  JVET-X0023 JVET-Y0023
Experiment

Report

Results - - JVET-W0182  JVET-X0188 JVET-Y0023
Summary
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