ITU, online, May 10, 2021

The 2020 ICNIRP RF guidelines

Eric van Rongen

Vice-chair, International Commission on Non-Ionizing Radiation Protection (ICNIRP)

Scope

- Limit exposure to radiofrequency EMFs (100 kHz 300 GHz)
- Provide protection against adverse health effects to humans under realistic conditions
- Consider occupational and general public exposure
- Consider direct and indirect exposure (but only contact with charged objects)
- Not included:
 - Electromagnetic interference
 - Exposure for medical purposes
 - Compliance issues (e.g. measurements)

Identification of adverse health effect thresholds

- Identification of scientific data on effects of exposure on biological systems
- Determination of effects considered both
 - adverse to humans and
 - scientifically substantiated (independent replication, sufficient quality, scientifically explicable generally)
- Identification of adverse health effect threshold
 - minimum RF EMF exposure level shown to produce harm, or
 - where insufficient RF/biology research, minimum exposure predicted to cause harm from non-RF literature, e.g. heating from other factors
 - operational adverse health effect threshold

Derivation of Basic restrictions (=exposure limits)

- Application of reduction factors to adverse health effect thresholds
 - account for scientific uncertainty, relative importance of the health effect, variation across the population
 - reduction factors may differ based on these parameters
 - consistency of reduction factors across limit types is sought, unless there is substantive reason for variation
- Reduction factors for general public are higher than for occupational
 - general public may not be aware of exposure and will not have any training to mitigate harm
 - variation in tolerance (e.g. for heating) may be larger in general public

Reference levels

- Field strength values derived from basic restrictions, to provide a practical method for determining compliance with basic restrictions
- Conservative for all *realistic* exposure conditions, but not all *possible* exposure conditions

Scientific basis

- Draft WHO RF EHC, SCENHIR, SSM reports + original papers not included
- Extensive body of relevant literature, ranging from cell studies to cancer epidemiology
- Only evidence of potentially harmful effects from:
 - temperature elevation above thresholds
 - microwave hearing (thermal effect; not considered harmful, no limits)
 - nerve stimulation (described in ICNIRP 2010 ELF Guidelines; not considered separately here)
 - electroporation (no problem in practice; no limits formulated)

Scientific basis (cont.)

- No evidence that RF EMF causes diseases such as cancer
 - Results of US, Italian studies (animals, lifetime exposure) not convincing (Note with ICNIRP comments published)
- No evidence for other non-thermal effects of RF EMF
- Thermal biology literature also considered

Interaction mechanisms (temperature elevation)

- Health effects primarily related to absolute body core or local temperature
- Body core / local temperature depend on many factors independent of EMF, e.g. environmental temperature, physical activity
- Therefore: temperature <u>increase</u> used that is indicative of adverse health effects *assuming thermonormal baseline state*
- Distinction between steady-state / brief exposures (no dissipation of heat)

Body core temperature

- Mean body core temperature (approximately 37 °C) typically varies over the day by 0.5 °C
 - thermoregulatory functions (e.g. vasodilation, sweating) keep body core temperature in thermonormal range
 - most health effects induced by hyperthermia (>38 °C) resolve with no lasting effects, but risk of accident and heat stroke increases (>40 °C)
- Increase >1 °C in body core temperature defined as potentially harmful
 - operational health effect threshold
 - for comparison: ACGIH (American Conference of Governmental Industrial Hygienists) heat stress at work standard:
 - protect against >1 °C core body temperature increase

SAR and body core temperature

- RF modelling:
 - ~6 W/kg WBA SAR, 1 h, ambient temperature of 28 °C:
 - core body temperature increase ~1 °C (consistent with limited measurements)
 - WBA SAR higher in children (more efficient heat dissipation)
- ICNIRP: adverse health effect threshold: WBA SAR of 4 W/kg averaged over 30 min (=time to ~ reach steady state)
- Very conservative !
- Generation energy in human adult: ~1 W/kg at rest, ~2 W/kg standing, ~12 W/kg running

Basic restrictions and differences with 1998 values

Parameter	Freq. range	ΔΤ	Spatial	Aver. time	Health effect level	RF	Occup.	RF	General public
Core ∆T	100 kHz-300 GHz	1°C	WBA	30 min <mark>6 min</mark>	4 W/kg	10	0.4 W/kg	50	0.08 W/kg
Local ∆T (Head & Torso)	100 kHz-6 GHz 100 kHz-10 GHz	2°C	10 g	6 min	20 W/kg	2	10 W/kg	10	2 W/kg
Local ∆T (Limbs)	100 kHz-6 GHz 100 kHz-10 GHz	5°C	10 g	6 min	40 W/kg	2	20 W/kg	10	4 W/kg
Local ∆T (Head, Torso, Limbs)	>6-300 GHz 30-300 GHz 10-300 GHz	5°C	4 cm ² 1 cm ² 20 cm ²	6 min 6 min <mark>68/f^{1.05}</mark>	200 W/m ² (absorbed, incident)	2	100 W/m ² 200 W/m ² 50 W/m ²	10	20 W/m ² 40 W/m ² 10 W/m ²

Reference levels

- Dependent on:
 - Workers / general public
 - Far field / radiative near field / reactive near field
 - Whole-body / local
 - Local, exposure \geq 6 minutes
 - Local, exposure < 6 minutes
- All reference levels for a given exposure frequency and situation need to be satified simultanuously

Reference levels general public, whole-body ≥6 min

5G

- Recent RF guidelines apply to 5G
- Not many differences with 1998 guidelines for lower frequencies (700 MHz, 3.5 GHz)
- Differences for 26 GHz:
 - Whole-body SAR applies
 - Local exposure: absorbed power density, dependence of surface area

Thank you for your attention