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auan!u m. !omI qu ng Is Different

“Quantum information is a radical departure in information technology, more
fundamentally different from current technology than the digital computer is
from the abacus”

W. D. Phillips
Nobel laureate 1997
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Certain problems are “hard” for Turing Machines — and “easy” for Quantum Machines

Complexity (Resources)

Quantum Machine

Turing Machine

\ 4

Size (No. bits)

No. Entangled qubits

A

Fault tolerant, N ~ 106
scalable
NISQ N~ 103

Simulator N ~ 102




Anticipated applications

Data encryption
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Bit:0Oor 1
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Superposition:

QuBit: 0+ 1
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“Speposton 1B

Classical Physics: Quantum Physics:
A switch is OFF (0) A switch may be OFF
or ON (1) and ON
: : Oand 1iscalleda
8;; 16?22;:% 'superposition’ and the
basis for quantum

computing — the “bit”

”

computing is the “qubit

Quaritum physics tells us there are more possiilities



mustratlng superposition with light

A ‘photon’ is a particle of light
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Quantum physics says that even a single
photon can pass through both slits

A single photon encodes a “qubit”
— a superposition of “0” + “1”




gperpoa!lon an! Interference

Quperpositions give rise to interference:
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Probability of photon arriving at A or B through slit 0 = &

A

Probability of photon arrivingat A or B through slit 1 = b?
Probability of photon arriving at A through both slits = (a+b)?~1 (constructive)
Probability of photon arriving at B through both slits = (a-b)?~0 (destructive)

Quantum algorithms are protocols that arrange for constructive
interference around the answer



wtum difference

One qubit can be in state 0+1.
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Two qubits can be in state (0+1) (0+1). 1 _) 1
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We can think of thisas: 00 + 01 + 10 + 11.
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Light is useful for moving information around.

Atoms are good for storing and processing it.
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The atom can be in a superposition of its ground and excited states.

These states can be used to encode a qubit.
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Entangling atoms using light: Gate Fidelity

01+10 2 Atoms

Atom 2
E

”1”

A single photon in a superposition of two paths LI
can prepare two atoms in an entangled state
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Network architecture enables an
operational quantum computer.

It is possible to scale up this construct based
on mastering control of entangling ions at
different nodes using light, and storing and
processing information in ions at each node.




at’s the challenge?

If it is possible in principle....

T — Ty e e —————— - ]

Cicovafoon fonscde e ) 2 / i

[o|To0000 ]




"What's the challerge? 1B

Qperposttion is a delicate
phenomenon and disappears in a
noisy environment.

Network architecture enables
errors and noise to be managed
effectively.

PIL
NOTH

“Well, your quantum computer is broken
In every way possible simultaneously.”
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Good news:

Theorists long ago figured out that we can
turn a whole bunch of badly-behaved
qubits into a smaller number of practically
perfect ones!

Thes is Fault Tolerant quantum camputing.
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"Networked Quantum Computing: Connectivity )
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TECHNOLOGIES

PROGRAMME
Networked
N | T Quantum
Infi i
Quantum
Computing &
Simulation Hub

Consortium of universities across UK & partner
organisations (industry and government)

National Quantum
Computing Centre




morms or Quantum Computing |

Companies Technologies Research Centres

s JOINT
QUANTUM ‘
INSTITUTE
« Quperconducting qubits
* NV centres in diamond m-

Networked
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Information

Technologies
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Google
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Quantum
Technologies
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» Topological qubits

ARC CENTRE OF EXCELLENCE FOR

Companies are playing o
to their strengths ETH:zurich
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Component performance benchmarking
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Points from David Lucas.

Graph from “Overhead and noise threshold of fault-tolerant

quantum error correction,” A MSteane, PRA 2003.



Hlneenng or scale

A fully scalable quantum computer is some way off

No. Entangled qubits

Fault tolerant,
scalable

Non-error corrected
NISQ

Simulator

What are the challenges?
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N ~ 106

N~ 103
Demonstrable quantum advantage

N <~ 102

>~15

~5

~0
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Time (years)

A
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» Delivering the systems engineering and manufacturing capabilities that are needed to
scale up laboratory prototypes.
* Providing access to emulators/early NISQ machines for software/algorithm development

for new applications.

* Scale up in engaging users, and identifying early adopters.



Near Term: feasible “Quantum Supremacy”

Boson Sampling

Algorithm to sample from a distribution that
is hard to compute for a Turing Machinet

1.  Require:
a) Identical bosons S { A
b) Linear evolution Py
c) Single boson detectors

2. BEven approximately sampling from
the boson distribution is (very likely)
classically hard

Probability oc |Per(A)’ nllB
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S. Aaronson, A. Arkhipov, “The computational complexity of linear optics’, Proc. STOC 2011, pp. 333-342.
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The promise of quantum computersis that certain computational tasks might be
executed exponentially faster on aquantum processor than on a classical processor'. A
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The latest news from Google Al
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Quantum computational advantage using photons

Han-Sen Zhong'-2", & Hui Wang'-2", ® Yu-Hao Deng'%", © Ming-Cheng Chen'%",  Li-Chao Peng'-Z, © Yi-Han
+ See all authors and affiliations
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A light approach to quantum advantage

Quantum computational advantage or supremacy is a long-anticipated milestone toward
practical quantum computers. Recent work claimed to have reached this point, but
subsequent work managed to speed up the clas
sample size—dependent loophole. Quantum cor c o H
one-shot experimental proof, will be the result o x = s
quantum devices and classical simulation. Zhoi
mode squeezed states into a 100-mode ultralov Dutput
output using 100 high-efficiency single-photon ¢ o i
coincidence, yielding a state space dimension © ‘:-':,:* - e ero
rate that is about 104-fold faster than using sta
and supercomputers.
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How to compare the performance of different quantum computers?

Entangling Gate Fidelity
Number of qubits

Connectivity

IBM Quantum Volume:

largest number of qubits on which you can build an
arbitrary quantum state

Volumetric measures;

Width — number of register elements
Depth — number of successive operations
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+ Controliable large-scale quantum interference via entanglement is the
resource for quantum computing

* This regime offers a transformation for IT.

+ We already have a roadmap for building a quantum computer.

 There is an emerging community to deliver hardware, software and

applications from users.




